These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27657464)

  • 1. Creating bidirectional conduction block in the cavotricuspid isthmus by cryothermal ablation with a short freeze time: Insight from the results with a 2-minute freeze cycle.
    Miyazaki S; Iwasawa J; Taniguchi H; Nakamura H; Hachiya H; Matsuda J; Takagi T; Watanabe T; Hirao K; Iesaka Y
    Int J Cardiol; 2016 Dec; 224():149-154. PubMed ID: 27657464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute success and persistence of bidirectional conduction block in the cavotricuspid isthmus one month post cryocatheter ablation of common atrial flutter.
    Kuniss M; Kurzidim K; Greiss H; Berkowitsch A; Sperzel J; Hamm C; Pitschner HF
    Pacing Clin Electrophysiol; 2006 Feb; 29(2):146-52. PubMed ID: 16492299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of cavotricuspid isthmus morphology in CRYO versus radiofrequency ablation of typical atrial flutter.
    Saygi S; Bastani H; Drca N; Insulander P; Wredlert C; Schwieler J; Jensen-Urstad M
    Scand Cardiovasc J; 2017 Apr; 51(2):69-73. PubMed ID: 27826985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine testing in atrial flutter ablation: unmasking of dormant conduction across the cavotricuspid isthmus and risk of recurrence.
    Morales GX; Macle L; Khairy P; Charnigo R; Davidson E; Thal S; Ching CK; Lellouche N; Whitbeck M; Delisle B; Thompson J; Di Biase L; Natale A; Nattel S; Elayi CS
    J Cardiovasc Electrophysiol; 2013 Sep; 24(9):995-1001. PubMed ID: 23701241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous pulmonary vein cryoablation and cavotricuspid isthmus radiofrequency ablation in patients with combined atrial fibrillation and typical atrial flutter.
    Peyrol M; Sbragia P; Ronchard T; Cautela J; Villacampa C; Laine M; Bonello L; Thuny F; Paganelli F; Lévy S
    J Electrocardiol; 2015; 48(4):729-33. PubMed ID: 25796100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective randomized comparison of durability of bidirectional conduction block in the cavotricuspid isthmus in patients after ablation of common atrial flutter using cryothermy and radiofrequency energy: the CRYOTIP study.
    Kuniss M; Vogtmann T; Ventura R; Willems S; Vogt J; Grönefeld G; Hohnloser S; Zrenner B; Erdogan A; Klein G; Lemke B; Neuzner J; Neumann T; Hamm CW; Pitschner HF
    Heart Rhythm; 2009 Dec; 6(12):1699-705. PubMed ID: 19959115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Incidence of Low Catheter-Tissue Contact Force at the Cavotricuspid Isthmus During Catheter Ablation of Atrial Flutter: Implications for Achieving Isthmus Block.
    Kumar S; Morton JB; Lee G; Halloran K; Kistler PM; Kalman JM
    J Cardiovasc Electrophysiol; 2015 Aug; 26(8):826-831. PubMed ID: 25952766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple and efficient identification of conduction gaps in post-ablation recurring atrial flutters.
    Laurent G; De Chillou C; Bertaux G; Poull IM; Martel A; Andronache M; Fromentin S; Fraison M; Gonzalez S; Pierre FS; Aliot E; Wolf JE
    Europace; 2006 Jan; 8(1):7-15. PubMed ID: 16627402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictors of acute inefficacy and the radiofrequency energy time required for cavotricuspid isthmus-dependent atrial flutter ablation.
    Pérez-Rodon J; Rodriguez-García J; Sarrias-Merce A; Rivas-Gandara N; Roca-Luque I; Francisco-Pascual J; Santos-Ortega A; Martín-Sánchez G; Ferreira-González I; Rodríguez-Palomares J; Evangelista-Masip A; García-Dorado D; Moya-Mitjans À
    J Interv Card Electrophysiol; 2017 Jun; 49(1):83-91. PubMed ID: 28265782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryothermal atrial linear ablation in patients with atrial fibrillation: An insight from the comparison with radiofrequency atrial linear ablation.
    Mukai M; Miyazaki S; Hasegawa K; Ishikawa E; Aoyama D; Nodera M; Kaseno K; Miyahara K; Matsui A; Shiomi Y; Tama N; Ikeda H; Fukuoka Y; Ishida K; Uzui H; Tada H
    J Cardiovasc Electrophysiol; 2020 May; 31(5):1075-1082. PubMed ID: 32108407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility and efficacy of simultaneous pulmonary vein isolation and cavotricuspid isthmus ablation using cryotherapy.
    Dhillon PS; Domenichini G; Gonna H; Bastiaenen R; Norman M; Gallagher MM
    J Cardiovasc Electrophysiol; 2014 Jul; 25(7):714-8. PubMed ID: 24641352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Dormant transisthmus conduction" revealed by adenosine after cavotricuspid isthmus ablation.
    Lehrmann H; Weber R; Park CI; Allgeier J; Schiebeling-Römer J; Arentz T; Jadidi A
    Heart Rhythm; 2012 Dec; 9(12):1942-6. PubMed ID: 22906533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usefulness of pre-procedure cavotricuspid isthmus imaging by modified transthoracic echocardiography for predicting outcome of isthmus-dependent atrial flutter ablation.
    Chen JY; Lin KH; Liou YM; Chang KC; Huang SK
    J Am Soc Echocardiogr; 2011 Oct; 24(10):1148-55. PubMed ID: 21764555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catheter-based cryoablation permanently cures patients with common atrial flutter.
    Manusama R; Timmermans C; Limon F; Philippens S; Crijns HJ; Rodriguez LM
    Circulation; 2004 Apr; 109(13):1636-9. PubMed ID: 15023886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Typical atrial flutter can effectively be treated using single one-minute cryoapplications: results from a repeat electrophysiological study.
    Manusama R; Timmermans C; Pison L; Philippens S; Perez D; Rodriguez LM
    J Interv Card Electrophysiol; 2009 Oct; 26(1):65-72. PubMed ID: 19521755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute and long-term efficacy and safety of catheter cryoablation of the cavotricuspid isthmus for treatment of type 1 atrial flutter.
    Feld GK; Daubert JP; Weiss R; Miles WM; Pelkey W;
    Heart Rhythm; 2008 Jul; 5(7):1009-14. PubMed ID: 18598956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavotricuspid isthmus ablation using a catheter equipped with mini electrodes on the 8 mm tip: a prospective comparison with an 8 mm dumbbell-shaped tip catheter and 8 mm tip cryothermal catheter.
    Iwasawa J; Miyazaki S; Takagi T; Taniguchi H; Nakamura H; Hachiya H; Iesaka Y
    Europace; 2016 Jun; 18(6):868-72. PubMed ID: 26559918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single cryothermia applications of less than five minutes produce permanent cavotricuspid isthmus block in humans.
    Manusama R; Timmermans C; Philippens S; Crijns HJ; Ayers GM; Rodriguez LM
    Heart Rhythm; 2004 Nov; 1(5):594-9. PubMed ID: 15851226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Randomized comparison of the continuous vs point-by-point radiofrequency ablation of the cavotricuspid isthmus for atrial flutter.
    Miyazaki S; Takahashi A; Kuwahara T; Kobori A; Yokoyama Y; Nozato T; Sato A; Aonuma K; Hirao K; Isobe M
    Circ J; 2007 Dec; 71(12):1922-6. PubMed ID: 18037747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety and durability of cavo-tricuspid isthmus linear ablation in the current era: Single-center 9-year experience from 1078 procedures.
    Kakehashi S; Miyazaki S; Hasegawa K; Nodera M; Mukai M; Aoyama D; Nagao M; Sekihara T; Eguchi T; Yamaguchi J; Shiomi Y; Tama N; Ikeda H; Ishida K; Uzui H; Tada H
    J Cardiovasc Electrophysiol; 2022 Jan; 33(1):40-45. PubMed ID: 34676946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.