These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 27657810)
1. Tetracyclic indolines as a novel class of β-lactam-selective resistance-modifying agent for MRSA. Zhu Y; Cleaver L; Wang W; Podoll JD; Walls S; Jolly A; Wang X Eur J Med Chem; 2017 Jan; 125():130-142. PubMed ID: 27657810 [TBL] [Abstract][Full Text] [Related]
2. Bio-inspired synthesis yields a tricyclic indoline that selectively resensitizes methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics. Podoll JD; Liu Y; Chang L; Walls S; Wang W; Wang X Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15573-8. PubMed ID: 24019472 [TBL] [Abstract][Full Text] [Related]
3. Gold-Catalyzed Cyclization Leads to a Bridged Tetracyclic Indolenine that Represses β-Lactam Resistance. Xu W; Wang W; Wang X Angew Chem Int Ed Engl; 2015 Aug; 54(33):9546-9. PubMed ID: 26074499 [TBL] [Abstract][Full Text] [Related]
5. Discovery and initial structure-activity relationships of N-benzyl tricyclic indolines as antibacterials for methicillin-resistant Staphylococcus aureus. Michael Barbour P; Podoll JD; Marholz LJ; Wang X Bioorg Med Chem Lett; 2014 Dec; 24(24):5602-5605. PubMed ID: 25466183 [TBL] [Abstract][Full Text] [Related]
6. Tryptoline-based benzothiazoles re-sensitize MRSA to β-lactam antibiotics. Wang X; Chen J; Wang W; Jaunarajs A; Wang X Bioorg Med Chem; 2019 Nov; 27(21):115095. PubMed ID: 31521461 [TBL] [Abstract][Full Text] [Related]
7. Sensitizing of β-lactam resistance by tannic acid in methicillin-resistant S. aureus. Kırmusaoğlu S World J Microbiol Biotechnol; 2019 Mar; 35(4):57. PubMed ID: 30900046 [TBL] [Abstract][Full Text] [Related]
8. Natural lipopeptide antibiotic tripropeptin C revitalizes and synergistically potentiates the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Hashizume H; Takahashi Y; Harada S; Nomoto A J Antibiot (Tokyo); 2015 Jun; 68(6):373-8. PubMed ID: 25586024 [TBL] [Abstract][Full Text] [Related]
9. Potentiation of the activity of β-lactam antibiotics by farnesol and its derivatives. Kim C; Hesek D; Lee M; Mobashery S Bioorg Med Chem Lett; 2018 Feb; 28(4):642-645. PubMed ID: 29402738 [TBL] [Abstract][Full Text] [Related]
10. Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. Lee SH; Jarantow LW; Wang H; Sillaots S; Cheng H; Meredith TC; Thompson J; Roemer T Chem Biol; 2011 Nov; 18(11):1379-89. PubMed ID: 22118672 [TBL] [Abstract][Full Text] [Related]
11. Synergistic antibacterial effect of apigenin with β-lactam antibiotics and modulation of bacterial resistance by a possible membrane effect against methicillin resistant Staphylococcus aureus. Akilandeswari K; Ruckmani K Cell Mol Biol (Noisy-le-grand); 2016 Dec; 62(14):74-82. PubMed ID: 28145860 [TBL] [Abstract][Full Text] [Related]
12. New erythromycin derivatives enhance β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. Li Z; He M; Dong X; Lin H; Ge H; Shen S; Li J; Ye RD; Chen D Lett Appl Microbiol; 2015 Apr; 60(4):352-8. PubMed ID: 25588530 [TBL] [Abstract][Full Text] [Related]
13. The Global Regulon sarA Regulates β-Lactam Antibiotic Resistance in Methicillin-Resistant Staphylococcus aureus In Vitro and in Endovascular Infections. Li L; Cheung A; Bayer AS; Chen L; Abdelhady W; Kreiswirth BN; Yeaman MR; Xiong YQ J Infect Dis; 2016 Nov; 214(9):1421-1429. PubMed ID: 27543672 [TBL] [Abstract][Full Text] [Related]
14. Phenotypic and genotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA) from different sources in China. Chao G; Zhang X; Zhang X; Huang Y; Xu L; Zhou L; Yang W; Jiang Y; Xue F; Wu Y Foodborne Pathog Dis; 2013 Mar; 10(3):214-21. PubMed ID: 23405883 [TBL] [Abstract][Full Text] [Related]
15. In vitro Potential Effect of Morin in the Combination with β-Lactam Antibiotics Against Methicillin-Resistant Staphylococcus aureus. Mun SH; Lee YS; Han SH; Lee SW; Cha SW; Kim SB; Seo YS; Kong R; Kang DH; Shin DW; Kang OH; Kwon DY Foodborne Pathog Dis; 2015 Jun; 12(6):545-50. PubMed ID: 26067230 [TBL] [Abstract][Full Text] [Related]
16. Discovery of bisindolyl-substituted cycloalkane-anellated indoles as novel class of antibacterial agents against S. aureus and MRSA. El-Sayed MT; Suzen S; Altanlar N; Ohlsen K; Hilgeroth A Bioorg Med Chem Lett; 2016 Jan; 26(1):218-21. PubMed ID: 26590101 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of synergy between SIPI-8294 and β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. He M; Shao L; Liu Q; Li J; Lin H; Jing L; Li M; Chen D Lett Appl Microbiol; 2016 Jul; 63(1):3-10. PubMed ID: 27173151 [TBL] [Abstract][Full Text] [Related]
18. Discovery of potent wall teichoic acid early stage inhibitors. Labroli MA; Caldwell JP; Yang C; Lee SH; Wang H; Koseoglu S; Mann P; Yang SW; Xiao J; Garlisi CG; Tan C; Roemer T; Su J Bioorg Med Chem Lett; 2016 Aug; 26(16):3999-4002. PubMed ID: 27436582 [TBL] [Abstract][Full Text] [Related]
19. Indole and Indoline Scaffolds in Antimicrobials: Overview, Synthesis and Recent Advances in Antimicrobial Research. Nieto MJ; Lupton HK Curr Med Chem; 2021; 28(24):4828-4844. PubMed ID: 33138747 [TBL] [Abstract][Full Text] [Related]
20. The potentiation of beta-lactam and anti-bacterial activities of lipophilic constituents from Alagasamy SV; Ramanathan S; Chear NJ; Tan WN; Ramachandram DS; Ching-Ga AT; Ponnusamy Y; Lai CS; Murugaiyah V J Complement Integr Med; 2021 Jan; 18(2):339-345. PubMed ID: 34187118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]