These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27657851)

  • 1. Application of Freeze-Dried Powders of Genetically Engineered Microbial Strains as Adsorbents for Rare Earth Metal Ions.
    Moriwaki H; Masuda R; Yamazaki Y; Horiuchi K; Miyashita M; Kasahara J; Tanaka T; Yamamoto H
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26524-26531. PubMed ID: 27657851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis.
    Moriwaki H; Koide R; Yoshikawa R; Warabino Y; Yamamoto H
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3721-8. PubMed ID: 22684329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.
    Yang F; Kubota F; Baba Y; Kamiya N; Goto M
    J Hazard Mater; 2013 Jun; 254-255():79-88. PubMed ID: 23587931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of diglycolamide polymer modified silica and its application as adsorbent for rare earth ions.
    Liu Z; Liu Y; Gong A
    Des Monomers Polym; 2019; 22(1):1-7. PubMed ID: 30651724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A study on the effect of rare earth metal ions on fluorescence spectra of the tryptophan using fluorescence spectroscopy].
    Fan ZF; Du LM; Ji X; Xie HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct; 21(5):682-4. PubMed ID: 12945331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of rare earth metal ions by the highly selective adsorption of phytate intercalated layered double hydroxide.
    Jin C; Liu H; Kong X; Yan H; Lei X
    Dalton Trans; 2018 Feb; 47(9):3093-3101. PubMed ID: 29256565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of microorganisms towards recovery of rare metal ions.
    Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):53-60. PubMed ID: 20393699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rare earth elements removal by microbial biosorption: a review.
    Andrès Y; Texier AC; Le Cloirec P
    Environ Technol; 2003 Nov; 24(11):1367-75. PubMed ID: 14733390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior and mechanism of low-concentration rare earth ions precipitated by the microbial humic-like acids.
    Wang J; Li H; Tang L; Zhong C; Liu Y; Lu L; Qiu T; Liu H
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):21965-21976. PubMed ID: 32285381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of La
    Liang P; An R; Li R; Wang D
    Int J Biol Macromol; 2018 May; 111():255-263. PubMed ID: 29305218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line collection/concentration and determination of transition and rare-earth metals in water samples using Multi-Auto-Pret system coupled with inductively coupled plasma-atomic emission spectrometry.
    Katarina RK; Oshima M; Motomizu S
    Talanta; 2009 May; 78(3):1043-50. PubMed ID: 19269470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes.
    Bandaru NM; Reta N; Dalal H; Ellis AV; Shapter J; Voelcker NH
    J Hazard Mater; 2013 Oct; 261():534-41. PubMed ID: 23994651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M(OH)3] parents.
    Zhang F; Zhao D
    ACS Nano; 2009 Jan; 3(1):159-64. PubMed ID: 19206262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.
    Park DM; Reed DW; Yung MC; Eslamimanesh A; Lencka MM; Anderko A; Fujita Y; Riman RE; Navrotsky A; Jiao Y
    Environ Sci Technol; 2016 Mar; 50(5):2735-42. PubMed ID: 26836847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA hydrolysis by rare-earth metal ions.
    Matsumoto Y; Komiyama M
    Nucleic Acids Symp Ser; 1992; (27):33-4. PubMed ID: 1289819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defluoridation of groundwater using brick powder as an adsorbent.
    Yadav AK; Kaushik CP; Haritash AK; Kansal A; Rani N
    J Hazard Mater; 2006 Feb; 128(2-3):289-93. PubMed ID: 16233952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Teichoic Acid Polymers Affect Expression and Localization of dl-Endopeptidase LytE Required for Lateral Cell Wall Hydrolysis in Bacillus subtilis.
    Kasahara J; Kiriyama Y; Miyashita M; Kondo T; Yamada T; Yazawa K; Yoshikawa R; Yamamoto H
    J Bacteriol; 2016 Jun; 198(11):1585-1594. PubMed ID: 27002131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective spin Hamiltonian model for superexchange interaction between rare earth ions in rare earth elpasolite crystals.
    Zhou X; Xia S; Tanner PA
    J Phys Chem B; 2007 Aug; 111(30):8677-9. PubMed ID: 17616222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of Cu2+ and Pb2+ ion on dolomite powder.
    Pehlivan E; Ozkan AM; Dinç S; Parlayici S
    J Hazard Mater; 2009 Aug; 167(1-3):1044-9. PubMed ID: 19237240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes.
    Li Q; Chen B; Lin P; Zhou J; Zhan J; Shen Q; Pan X
    Int J Phytoremediation; 2016; 18(2):103-9. PubMed ID: 26605425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.