These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27658002)

  • 1. Direct Intertube Cross-Linking of Carbon Nanotubes at Room Temperature.
    Gao Y; Chen H; Ge J; Zhao J; Li Q; Tang J; Cui Y; Chen L
    Nano Lett; 2016 Oct; 16(10):6541-6547. PubMed ID: 27658002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Stability of UV-Defluorination-Driven Crosslinked Carbon Nanotubes: A Raman Study.
    Gao Y; Islam MT; Otuokere PU; Pulikkathara M; Liu Y
    Nanomaterials (Basel); 2024 Sep; 14(17):. PubMed ID: 39269126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of carbon nanotube fibers at extreme temperatures.
    Zhang C; Song Y; Zhang H; Lv B; Qiao J; Yu N; Zhang Y; Di J; Li Q
    Nanoscale; 2019 Mar; 11(10):4585-4590. PubMed ID: 30809624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement of single-walled carbon nanotube bundles by intertube bridging.
    Kis A; Csányi G; Salvetat JP; Lee TN; Couteau E; Kulik AJ; Benoit W; Brugger J; Forró L
    Nat Mater; 2004 Mar; 3(3):153-7. PubMed ID: 14991016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of intertube interactions in double- and triple-walled carbon nanotubes.
    Hirschmann TCh; Araujo PT; Muramatsu H; Rodriguez-Nieva JF; Seifert M; Nielsch K; Kim YA; Dresselhaus MS
    ACS Nano; 2014 Feb; 8(2):1330-41. PubMed ID: 24456167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirality-Dependent Mechanical Properties of Bundles and Thin Films Composed of Covalently Cross-Linked Carbon Nanotubes.
    Kayang KW; Banna AH; Volkov AN
    Langmuir; 2022 Feb; 38(6):1977-1994. PubMed ID: 35104409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Electrical and Mechanical Properties of Chemically Cross-Linked Carbon-Nanotube-Based Fibers and Their Application in High-Performance Supercapacitors.
    Wang G; Kim SK; Wang MC; Zhai T; Munukutla S; Girolami GS; Sempsrott PJ; Nam S; Braun PV; Lyding JW
    ACS Nano; 2020 Jan; 14(1):632-639. PubMed ID: 31877019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.
    Miller SG; Williams TS; Baker JS; Solá F; Lebron-Colon M; McCorkle LS; Wilmoth NG; Gaier J; Chen M; Meador MA
    ACS Appl Mater Interfaces; 2014 May; 6(9):6120-6. PubMed ID: 24720450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic Modulation of Carbon Nanotube Growth in Direct Spinning for High-Strength Carbon Nanotube Fibers.
    Hu Z; Sun X; Zhang X; Jia X; Feng X; Cui M; Gao E; Qian L; Gao X; Zhang J
    J Am Chem Soc; 2024 Apr; ():. PubMed ID: 38600631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alignment of Carbon Nanotubes in Carbon Nanotube Fibers Through Nanoparticles: A Route for Controlling Mechanical and Electrical Properties.
    Hossain MM; Islam MA; Shima H; Hasan M; Lee M
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5530-5542. PubMed ID: 28106367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns.
    Inoue Y; Nakamura K; Miyasaka Y; Nakano T; Kletetschka G
    Nanotechnology; 2016 Mar; 27(11):115701. PubMed ID: 26871413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking.
    Yu Q; Alvarez NT; Miller P; Malik R; Haase MR; Schulz M; Shanov V; Zhu X
    Materials (Basel); 2016 Jan; 9(2):. PubMed ID: 28787868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional polymeric structures of single-wall carbon nanotubes.
    Lian CS; Wang JT
    J Chem Phys; 2014 May; 140(20):204709. PubMed ID: 24880313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different Approaches to Oxygen Functionalization of Multi-Walled Carbon Nanotubes and Their Effect on Mechanical and Thermal Properties of Polyamide 12 Based Composites.
    Kwiatkowska M; Pełech R; Jędrzejewska A; Moszyński D; Pełech I
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32028605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural stability of carbon nanotube films: the role of bending buckling.
    Volkov AN; Zhigilei LV
    ACS Nano; 2010 Oct; 4(10):6187-95. PubMed ID: 20931973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoscale mechanics of twisting carbon nanotube yarns.
    Mirzaeifar R; Qin Z; Buehler MJ
    Nanoscale; 2015 Mar; 7(12):5435-45. PubMed ID: 25732328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructural evolution of carbon nanotube fibers: deformation and strength mechanism.
    Liu X; Lu W; Ayala OM; Wang LP; Karlsson AM; Yang Q; Chou TW
    Nanoscale; 2013 Mar; 5(5):2002-8. PubMed ID: 23370166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale mechanics of the lateral pressure effect on enhancing the load transfer between polymer coated CNTs.
    Yazdandoost F; Mirzaeifar R; Qin Z; Buehler MJ
    Nanoscale; 2017 May; 9(17):5565-5576. PubMed ID: 28405667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Synthesis of Ultralong Carbon Nanotubes with Perfect Structures and Extraordinary Properties.
    Zhang R; Zhang Y; Wei F
    Acc Chem Res; 2017 Feb; 50(2):179-189. PubMed ID: 28186727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.