These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 27658505)
1. Implementation of pattern-mixture models in randomized clinical trials. Bunouf P; Molenberghs G Pharm Stat; 2016 Nov; 15(6):494-506. PubMed ID: 27658505 [TBL] [Abstract][Full Text] [Related]
2. Multiple imputation compared with some informative dropout procedures in the estimation and comparison of rates of change in longitudinal clinical trials with dropouts. Ali MW; Siddiqui O J Biopharm Stat; 2000 May; 10(2):165-81. PubMed ID: 10803723 [TBL] [Abstract][Full Text] [Related]
3. A structured framework for assessing sensitivity to missing data assumptions in longitudinal clinical trials. Mallinckrodt CH; Lin Q; Molenberghs M Pharm Stat; 2013; 12(1):1-6. PubMed ID: 23193075 [TBL] [Abstract][Full Text] [Related]
4. Treatment effects in randomized longitudinal trials with different types of nonignorable dropout. Yang M; Maxwell SE Psychol Methods; 2014 Jun; 19(2):188-210. PubMed ID: 24079928 [TBL] [Abstract][Full Text] [Related]
5. A pattern-mixture model with nonfuture dependence and shift in current missing values. Lu K; Chen C; Li D J Biopharm Stat; 2015; 25(3):548-69. PubMed ID: 24905193 [TBL] [Abstract][Full Text] [Related]
6. A comparison of the random-effects pattern mixture model with last-observation-carried-forward (LOCF) analysis in longitudinal clinical trials with dropouts. Siddiqui O; Ali MW J Biopharm Stat; 1998 Nov; 8(4):545-63. PubMed ID: 9855033 [TBL] [Abstract][Full Text] [Related]
7. Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings. Donneau AF; Mauer M; Lambert P; Molenberghs G; Albert A J Biopharm Stat; 2015; 25(3):570-601. PubMed ID: 24905056 [TBL] [Abstract][Full Text] [Related]
8. Comparison of data analysis strategies for intent-to-treat analysis in pre-test-post-test designs with substantial dropout rates. Salim A; Mackinnon A; Christensen H; Griffiths K Psychiatry Res; 2008 Sep; 160(3):335-45. PubMed ID: 18718673 [TBL] [Abstract][Full Text] [Related]
9. Assessing missing data assumptions in longitudinal studies: an example using a smoking cessation trial. Yang X; Shoptaw S Drug Alcohol Depend; 2005 Mar; 77(3):213-25. PubMed ID: 15734221 [TBL] [Abstract][Full Text] [Related]
10. Imputation of missing covariate in randomized controlled trials with a continuous outcome: Scoping review and new results. Kayembe MT; Jolani S; Tan FES; van Breukelen GJP Pharm Stat; 2020 Nov; 19(6):840-860. PubMed ID: 32510791 [TBL] [Abstract][Full Text] [Related]
11. Analysis of an incomplete binary outcome derived from frequently recorded longitudinal continuous data: application to daily pain evaluation. Bunouf P; Grouin JM; Molenberghs G Stat Med; 2012 Jul; 31(15):1554-71. PubMed ID: 22359232 [TBL] [Abstract][Full Text] [Related]
12. Α Markov model for longitudinal studies with incomplete dichotomous outcomes. Efthimiou O; Welton N; Samara M; Leucht S; Salanti G; Pharm Stat; 2017 Mar; 16(2):122-132. PubMed ID: 27917593 [TBL] [Abstract][Full Text] [Related]
13. Growth modeling with nonignorable dropout: alternative analyses of the STAR*D antidepressant trial. Muthén B; Asparouhov T; Hunter AM; Leuchter AF Psychol Methods; 2011 Mar; 16(1):17-33. PubMed ID: 21381817 [TBL] [Abstract][Full Text] [Related]
14. Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing? Mukaka M; White SA; Terlouw DJ; Mwapasa V; Kalilani-Phiri L; Faragher EB Trials; 2016 Jul; 17():341. PubMed ID: 27450066 [TBL] [Abstract][Full Text] [Related]
15. A marginalized pattern-mixture model for longitudinal binary data when nonresponse depends on unobserved responses. Wilkins KJ; Fitzmaurice GM Biostatistics; 2007 Apr; 8(2):297-305. PubMed ID: 16787997 [TBL] [Abstract][Full Text] [Related]
16. Bayesian pattern-mixture models for dropout and intermittently missing data in longitudinal data analysis. Blozis SA Behav Res Methods; 2024 Mar; 56(3):1953-1967. PubMed ID: 37221346 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity analysis of incomplete longitudinal data departing from the missing at random assumption: Methodology and application in a clinical trial with drop-outs. Moreno-Betancur M; Chavance M Stat Methods Med Res; 2016 Aug; 25(4):1471-89. PubMed ID: 23698867 [TBL] [Abstract][Full Text] [Related]
18. A pattern-mixture model approach for handling missing continuous outcome data in longitudinal cluster randomized trials. Fiero MH; Hsu CH; Bell ML Stat Med; 2017 Nov; 36(26):4094-4105. PubMed ID: 28783884 [TBL] [Abstract][Full Text] [Related]
19. Missing data in longitudinal studies: cross-sectional multiple imputation provides similar estimates to full-information maximum likelihood. Ferro MA Ann Epidemiol; 2014 Jan; 24(1):75-7. PubMed ID: 24210708 [TBL] [Abstract][Full Text] [Related]
20. An analytic method for the placebo-based pattern-mixture model. Lu K Stat Med; 2014 Mar; 33(7):1134-45. PubMed ID: 24122822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]