These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 27658886)
1. How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach. Ichikawa D; Saito T; Ujita W; Oyama H J Biomed Inform; 2016 Dec; 64():20-24. PubMed ID: 27658886 [TBL] [Abstract][Full Text] [Related]
2. Using machine-learning approaches to predict non-participation in a nationwide general health check-up scheme. Shimoda A; Ichikawa D; Oyama H Comput Methods Programs Biomed; 2018 Sep; 163():39-46. PubMed ID: 30119856 [TBL] [Abstract][Full Text] [Related]
3. Machine learning constructs a diagnostic prediction model for calculous pyonephrosis. Yang B; Zhong J; Yang Y; Xu J; Liu H; Liu J Urolithiasis; 2024 Jun; 52(1):96. PubMed ID: 38896174 [TBL] [Abstract][Full Text] [Related]
4. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree. Li K; Shi Q; Liu S; Xie Y; Liu J Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618 [TBL] [Abstract][Full Text] [Related]
5. Using machine-learning methods to support health-care professionals in making admission decisions. Luo L; Li J; Liu C; Shen W Int J Health Plann Manage; 2019 Apr; 34(2):e1236-e1246. PubMed ID: 30957270 [TBL] [Abstract][Full Text] [Related]
6. Prediction models to identify individuals at risk of metabolic syndrome who are unlikely to participate in a health intervention program. Shimoda A; Ichikawa D; Oyama H Int J Med Inform; 2018 Mar; 111():90-99. PubMed ID: 29425640 [TBL] [Abstract][Full Text] [Related]
7. Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease. Jiang H; Mao H; Lu H; Lin P; Garry W; Lu H; Yang G; Rainer TH; Chen X Int J Med Inform; 2021 Jan; 145():104326. PubMed ID: 33197878 [TBL] [Abstract][Full Text] [Related]
8. Machine learning approaches to predict peak demand days of cardiovascular admissions considering environmental exposure. Qiu H; Luo L; Su Z; Zhou L; Wang L; Chen Y BMC Med Inform Decis Mak; 2020 May; 20(1):83. PubMed ID: 32357880 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of explainable machine-learning models for carotid atherosclerosis early screening. Yun K; He T; Zhen S; Quan M; Yang X; Man D; Zhang S; Wang W; Han X J Transl Med; 2023 May; 21(1):353. PubMed ID: 37246225 [TBL] [Abstract][Full Text] [Related]
10. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women. Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976 [TBL] [Abstract][Full Text] [Related]
11. Predicting Future Driving Risk of Crash-Involved Drivers Based on a Systematic Machine Learning Framework. Wang C; Liu L; Xu C; Lv W Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30691063 [TBL] [Abstract][Full Text] [Related]
12. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
13. Fetal health status prediction based on maternal clinical history using machine learning techniques. Akbulut A; Ertugrul E; Topcu V Comput Methods Programs Biomed; 2018 Sep; 163():87-100. PubMed ID: 30119860 [TBL] [Abstract][Full Text] [Related]
14. Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods. Decruyenaere A; Decruyenaere P; Peeters P; Vermassen F; Dhaene T; Couckuyt I BMC Med Inform Decis Mak; 2015 Oct; 15():83. PubMed ID: 26466993 [TBL] [Abstract][Full Text] [Related]
15. The prediction of asymptomatic carotid atherosclerosis with electronic health records: a comparative study of six machine learning models. Fan J; Chen M; Luo J; Yang S; Shi J; Yao Q; Zhang X; Du S; Qu H; Cheng Y; Ma S; Zhang M; Xu X; Wang Q; Zhan S BMC Med Inform Decis Mak; 2021 Apr; 21(1):115. PubMed ID: 33820531 [TBL] [Abstract][Full Text] [Related]
16. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Maniruzzaman M; Jahanur Rahman M; Ahammed B; Abedin MM; Suri HS; Biswas M; El-Baz A; Bangeas P; Tsoulfas G; Suri JS Comput Methods Programs Biomed; 2019 Jul; 176():173-193. PubMed ID: 31200905 [TBL] [Abstract][Full Text] [Related]
17. Stroke Prediction with Machine Learning Methods among Older Chinese. Wu Y; Fang Y Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32178250 [TBL] [Abstract][Full Text] [Related]
18. Applying machine learning methods to develop a successful aging maintenance prediction model based on physical fitness tests. Cai T; Long J; Kuang J; You F; Zou T; Wu L Geriatr Gerontol Int; 2020 Jun; 20(6):637-642. PubMed ID: 32358851 [TBL] [Abstract][Full Text] [Related]
19. Machine learning for predicting the risk stratification of 1-5 cm gastric gastrointestinal stromal tumors based on CT. Zhang C; Wang J; Yang Y; Dai B; Xu Z; Zhu F; Yu H BMC Med Imaging; 2023 Jul; 23(1):90. PubMed ID: 37415125 [TBL] [Abstract][Full Text] [Related]
20. Construction of a Risk Prediction Model for Hospital-Acquired Pulmonary Embolism in Hospitalized Patients. Hou L; Hu L; Gao W; Sheng W; Hao Z; Chen Y; Li J Clin Appl Thromb Hemost; 2021; 27():10760296211040868. PubMed ID: 34558325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]