These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
496 related articles for article (PubMed ID: 27659281)
1. Molecular mechanisms of HLA class I-mediated immune evasion of human tumors and their role in resistance to immunotherapies. Seliger B HLA; 2016 Nov; 88(5):213-220. PubMed ID: 27659281 [TBL] [Abstract][Full Text] [Related]
2. HLA Class I Antigen Processing Machinery Defects in Cancer Cells-Frequency, Functional Significance, and Clinical Relevance with Special Emphasis on Their Role in T Cell-Based Immunotherapy of Malignant Disease. Seliger B; Ferrone S Methods Mol Biol; 2020; 2055():325-350. PubMed ID: 31502159 [TBL] [Abstract][Full Text] [Related]
3. The role of classical and non-classical HLA class I antigens in human tumors. Bukur J; Jasinski S; Seliger B Semin Cancer Biol; 2012 Aug; 22(4):350-8. PubMed ID: 22465194 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms of Immune Tolerance in Leukemia and Lymphoma. Curran EK; Godfrey J; Kline J Trends Immunol; 2017 Jul; 38(7):513-525. PubMed ID: 28511816 [TBL] [Abstract][Full Text] [Related]
5. Cancer Immunology: Immune Escape of Tumors-Expression and Regulation of HLA Class I Molecules and Its Role in Immunotherapies. Wang Y; Jasinski-Bergner S; Wickenhauser C; Seliger B Adv Anat Pathol; 2023 May; 30(3):148-159. PubMed ID: 36517481 [TBL] [Abstract][Full Text] [Related]
6. Acceleration of pancreatic tumorigenesis under immunosuppressive microenvironment induced by Reg3g overexpression. Liu X; Zhou Z; Cheng Q; Wang H; Cao H; Xu Q; Tuo Y; Jiang L; Zou Y; Ren H; Xiang M Cell Death Dis; 2017 Sep; 8(9):e3033. PubMed ID: 28880262 [TBL] [Abstract][Full Text] [Related]
7. MHC class I antigens, immune surveillance, and tumor immune escape. Garcia-Lora A; Algarra I; Garrido F J Cell Physiol; 2003 Jun; 195(3):346-55. PubMed ID: 12704644 [TBL] [Abstract][Full Text] [Related]
9. The NKG2A-HLA-E Axis as a Novel Checkpoint in the Tumor Microenvironment. Borst L; van der Burg SH; van Hall T Clin Cancer Res; 2020 Nov; 26(21):5549-5556. PubMed ID: 32409305 [TBL] [Abstract][Full Text] [Related]
10. PD-1-PD-L1 immune-checkpoint blockade in malignant lymphomas. Wang Y; Wu L; Tian C; Zhang Y Ann Hematol; 2018 Feb; 97(2):229-237. PubMed ID: 29128997 [TBL] [Abstract][Full Text] [Related]
11. [Development of novel immunotherapy targeting cancer immune evasion]. Tamada K Gan To Kagaku Ryoho; 2014 Sep; 41(9):1062-5. PubMed ID: 25248888 [TBL] [Abstract][Full Text] [Related]
13. Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape. Eichmüller SB; Osen W; Mandelboim O; Seliger B J Natl Cancer Inst; 2017 Oct; 109(10):. PubMed ID: 28383653 [TBL] [Abstract][Full Text] [Related]
14. Immune Dysfunction in Non-Hodgkin Lymphoma: Avenues for New Immunotherapy-Based Strategies. Falchi L Curr Hematol Malig Rep; 2017 Oct; 12(5):484-494. PubMed ID: 28822058 [TBL] [Abstract][Full Text] [Related]
15. Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy. Friedrich M; Jasinski-Bergner S; Lazaridou MF; Subbarayan K; Massa C; Tretbar S; Mueller A; Handke D; Biehl K; Bukur J; Donia M; Mandelboim O; Seliger B Cancer Immunol Immunother; 2019 Oct; 68(10):1689-1700. PubMed ID: 31375885 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of tumor-induced T cell immune suppression and therapeutics to counter those effects. Hwang I; Nguyen N Arch Pharm Res; 2015 Aug; 38(8):1415-33. PubMed ID: 25634101 [TBL] [Abstract][Full Text] [Related]
17. Part I: Checkpoint inhibitors in cancer therapy. Daud AI Immunotherapy; 2016 Jun; 8(6):675-6. PubMed ID: 27197535 [No Abstract] [Full Text] [Related]
18. Tumor Escape Phenotype in Bladder Cancer Is Associated with Loss of HLA Class I Expression, T-Cell Exclusion and Stromal Changes. Gil-Julio H; Perea F; Rodriguez-Nicolas A; Cozar JM; González-Ramirez AR; Concha A; Garrido F; Aptsiauri N; Ruiz-Cabello F Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298868 [TBL] [Abstract][Full Text] [Related]
19. Frequent Loss of IRF2 in Cancers Leads to Immune Evasion through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression. Kriegsman BA; Vangala P; Chen BJ; Meraner P; Brass AL; Garber M; Rock KL J Immunol; 2019 Oct; 203(7):1999-2010. PubMed ID: 31471524 [TBL] [Abstract][Full Text] [Related]
20. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. Smolle MA; Calin HN; Pichler M; Calin GA FEBS J; 2017 Jul; 284(13):1952-1966. PubMed ID: 28132417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]