These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 27659283)
1. Automated liver segmentation from a postmortem CT scan based on a statistical shape model. Saito A; Yamamoto S; Nawano S; Shimizu A Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):205-221. PubMed ID: 27659283 [TBL] [Abstract][Full Text] [Related]
2. Statistical shape model of a liver for autopsy imaging. Saito A; Shimizu A; Watanabe H; Yamamoto S; Nawano S; Kobatake H Int J Comput Assist Radiol Surg; 2014 Mar; 9(2):269-81. PubMed ID: 23877279 [TBL] [Abstract][Full Text] [Related]
3. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs. Saito A; Nawano S; Shimizu A Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720 [TBL] [Abstract][Full Text] [Related]
4. A generalized active shape model for segmentation of liver in low-contrast CT volumes. Esfandiarkhani M; Foruzan AH Comput Biol Med; 2017 Mar; 82():59-70. PubMed ID: 28161593 [TBL] [Abstract][Full Text] [Related]
5. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model. Okada T; Shimada R; Hori M; Nakamoto M; Chen YW; Nakamura H; Sato Y Acad Radiol; 2008 Nov; 15(11):1390-403. PubMed ID: 18995190 [TBL] [Abstract][Full Text] [Related]
6. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model. Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047 [TBL] [Abstract][Full Text] [Related]
7. Fast approximation for joint optimization of segmentation, shape, and location priors, and its application in gallbladder segmentation. Saito A; Nawano S; Shimizu A Int J Comput Assist Radiol Surg; 2017 May; 12(5):743-756. PubMed ID: 28349505 [TBL] [Abstract][Full Text] [Related]
8. 3D active shape model segmentation with nonlinear shape priors. Kirschner M; Becker M; Wesarg S Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):492-9. PubMed ID: 21995065 [TBL] [Abstract][Full Text] [Related]
9. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume. Meng Q; Kitasaka T; Nimura Y; Oda M; Ueno J; Mori K Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):245-261. PubMed ID: 27796791 [TBL] [Abstract][Full Text] [Related]
10. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y Med Image Anal; 2015 Dec; 26(1):1-18. PubMed ID: 26277022 [TBL] [Abstract][Full Text] [Related]
11. Automated PET-guided liver segmentation from low-contrast CT volumes using probabilistic atlas. Li C; Wang X; Xia Y; Eberl S; Yin Y; Feng DD Comput Methods Programs Biomed; 2012 Aug; 107(2):164-74. PubMed ID: 21855163 [TBL] [Abstract][Full Text] [Related]
12. Automatic liver segmentation using a statistical shape model with optimal surface detection. Zhang X; Tian J; Deng K; Wu Y; Li X IEEE Trans Biomed Eng; 2010 Oct; 57(10):2622-6. PubMed ID: 20615804 [TBL] [Abstract][Full Text] [Related]
13. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. Yokota F; Okada T; Takao M; Sugano N; Tada Y; Sato Y Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):811-8. PubMed ID: 20426186 [TBL] [Abstract][Full Text] [Related]
14. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation. Linguraru MG; Sandberg JK; Li Z; Shah F; Summers RM Med Phys; 2010 Feb; 37(2):771-83. PubMed ID: 20229887 [TBL] [Abstract][Full Text] [Related]
15. Liver segmentation using automatically defined patient specific B-spline surface models. Song Y; Bulpitt AJ; Brodlie KW Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):43-50. PubMed ID: 20426094 [TBL] [Abstract][Full Text] [Related]
16. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph. Zheng G Med Phys; 2010 Apr; 37(4):1424-39. PubMed ID: 20443464 [TBL] [Abstract][Full Text] [Related]
17. A model-based validation scheme for organ segmentation in CT scan volumes. Badakhshannoory H; Saeedi P IEEE Trans Biomed Eng; 2011 Sep; 58(9):2681-93. PubMed ID: 21768040 [TBL] [Abstract][Full Text] [Related]
18. A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation. Heimann T; Münzing S; Meinzer HP; Wolf I Inf Process Med Imaging; 2007; 20():1-12. PubMed ID: 17633684 [TBL] [Abstract][Full Text] [Related]
19. A conditional statistical shape model with integrated error estimation of the conditions; application to liver segmentation in non-contrast CT images. Tomoshige S; Oost E; Shimizu A; Watanabe H; Nawano S Med Image Anal; 2014 Jan; 18(1):130-43. PubMed ID: 24184436 [TBL] [Abstract][Full Text] [Related]
20. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images. Wang J; Cheng Y; Guo C; Wang Y; Tamura S Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]