BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 27659283)

  • 1. Automated liver segmentation from a postmortem CT scan based on a statistical shape model.
    Saito A; Yamamoto S; Nawano S; Shimizu A
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):205-221. PubMed ID: 27659283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical shape model of a liver for autopsy imaging.
    Saito A; Shimizu A; Watanabe H; Yamamoto S; Nawano S; Kobatake H
    Int J Comput Assist Radiol Surg; 2014 Mar; 9(2):269-81. PubMed ID: 23877279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generalized active shape model for segmentation of liver in low-contrast CT volumes.
    Esfandiarkhani M; Foruzan AH
    Comput Biol Med; 2017 Mar; 82():59-70. PubMed ID: 28161593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model.
    Okada T; Shimada R; Hori M; Nakamoto M; Chen YW; Nakamura H; Sato Y
    Acad Radiol; 2008 Nov; 15(11):1390-403. PubMed ID: 18995190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model.
    Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast approximation for joint optimization of segmentation, shape, and location priors, and its application in gallbladder segmentation.
    Saito A; Nawano S; Shimizu A
    Int J Comput Assist Radiol Surg; 2017 May; 12(5):743-756. PubMed ID: 28349505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D active shape model segmentation with nonlinear shape priors.
    Kirschner M; Becker M; Wesarg S
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):492-9. PubMed ID: 21995065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.
    Meng Q; Kitasaka T; Nimura Y; Oda M; Ueno J; Mori K
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):245-261. PubMed ID: 27796791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Anal; 2015 Dec; 26(1):1-18. PubMed ID: 26277022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated PET-guided liver segmentation from low-contrast CT volumes using probabilistic atlas.
    Li C; Wang X; Xia Y; Eberl S; Yin Y; Feng DD
    Comput Methods Programs Biomed; 2012 Aug; 107(2):164-74. PubMed ID: 21855163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic liver segmentation using a statistical shape model with optimal surface detection.
    Zhang X; Tian J; Deng K; Wu Y; Li X
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2622-6. PubMed ID: 20615804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure.
    Yokota F; Okada T; Takao M; Sugano N; Tada Y; Sato Y
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):811-8. PubMed ID: 20426186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation.
    Linguraru MG; Sandberg JK; Li Z; Shah F; Summers RM
    Med Phys; 2010 Feb; 37(2):771-83. PubMed ID: 20229887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liver segmentation using automatically defined patient specific B-spline surface models.
    Song Y; Bulpitt AJ; Brodlie KW
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):43-50. PubMed ID: 20426094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swarm Intelligence Integrated Graph-Cut for Liver Segmentation from 3D-CT Volumes.
    Eapen M; Korah R; Geetha G
    ScientificWorldJournal; 2015; 2015():823541. PubMed ID: 26689833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph.
    Zheng G
    Med Phys; 2010 Apr; 37(4):1424-39. PubMed ID: 20443464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model-based validation scheme for organ segmentation in CT scan volumes.
    Badakhshannoory H; Saeedi P
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2681-93. PubMed ID: 21768040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation.
    Heimann T; Münzing S; Meinzer HP; Wolf I
    Inf Process Med Imaging; 2007; 20():1-12. PubMed ID: 17633684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A conditional statistical shape model with integrated error estimation of the conditions; application to liver segmentation in non-contrast CT images.
    Tomoshige S; Oost E; Shimizu A; Watanabe H; Nawano S
    Med Image Anal; 2014 Jan; 18(1):130-43. PubMed ID: 24184436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.