These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27659482)

  • 1. Age and gender effects on bone mass density variation: finite elements simulation.
    Barkaoui A; Ben Kahla R; Merzouki T; Hambli R
    Biomech Model Mechanobiol; 2017 Apr; 16(2):521-535. PubMed ID: 27659482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of denosumab effects on bone remodeling: A combined pharmacokinetics and finite element modeling.
    Hambli R; Boughattas MH; Daniel JL; Kourta A
    J Mech Behav Biomed Mater; 2016 Jul; 60():492-504. PubMed ID: 27026666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related mechanical strength evolution of trabecular bone under fatigue damage for both genders: Fracture risk evaluation.
    Ben Kahla R; Barkaoui A; Merzouki T
    J Mech Behav Biomed Mater; 2018 Aug; 84():64-73. PubMed ID: 29751273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between DEXA and finite element studies in the long-term bone remodeling of an anatomical femoral stem.
    Herrera A; Panisello JJ; Ibarz E; Cegoñino J; Puértolas JA; Gracia L
    J Biomech Eng; 2009 Apr; 131(4):041013. PubMed ID: 19275442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric investigation of load-induced structure remodeling in the proximal femur.
    Marzban A; Canavan P; Warner G; Vaziri A; Nayeb-Hashemi H
    Proc Inst Mech Eng H; 2012 Jun; 226(6):450-60. PubMed ID: 22783761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state.
    Tsubota K; Adachi T; Tomita Y
    J Biomech; 2002 Dec; 35(12):1541-51. PubMed ID: 12445607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The behavior of adaptive bone-remodeling simulation models.
    Weinans H; Huiskes R; Grootenboer HJ
    J Biomech; 1992 Dec; 25(12):1425-41. PubMed ID: 1491020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law.
    Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T
    J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unified framework of cell population dynamics and mechanical stimulus using a discrete approach in bone remodelling.
    Quexada D; Ramtani S; Trabelsi O; Marquez K; Marie-Christine ; Linero Segrera DL; Duque-Daza C; Garzón Alvarado DA
    Comput Methods Biomech Biomed Engin; 2023 Mar; 26(4):399-411. PubMed ID: 35587027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On biological availability dependent bone remodeling.
    Papastavrou A; Schmidt I; Steinmann P
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):432-444. PubMed ID: 32126825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of subject-specific musculoskeletal loading on the prediction of bone density distribution in the proximal femur.
    Vahdati A; Walscharts S; Jonkers I; Garcia-Aznar JM; Vander Sloten J; van Lenthe GH
    J Mech Behav Biomed Mater; 2014 Feb; 30():244-52. PubMed ID: 24342624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.
    Levadnyi I; Awrejcewicz J; Gubaua JE; Pereira JT
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():122-129. PubMed ID: 29100185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling.
    Jang IG; Kim IY
    J Biomech; 2010 Jan; 43(2):294-301. PubMed ID: 19762027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Load adaptation through bone remodeling: a mechanobiological model coupled with the finite element method.
    Peyroteo MMA; Belinha J; Natal Jorge RM
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1495-1507. PubMed ID: 33900492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term study of bone remodelling after femoral stem: a comparison between dexa and finite element simulation.
    Herrera A; Panisello JJ; Ibarz E; Cegoñino J; Puértolas JA; Gracia L
    J Biomech; 2007; 40(16):3615-25. PubMed ID: 17675042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur.
    Langton CM; Pisharody S; Keyak JH
    Med Eng Phys; 2009 Jul; 31(6):668-72. PubMed ID: 19230742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Local Bone Loads for the Volume of Interest.
    Kim JJ; Kim Y; Jang IG
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.