These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 27659782)
21. Turning coacervates into biohybrid glass: core/shell capsules formed by silica precipitation in protein/polysaccharide scaffolds. Erni P; Dardelle G; Sillick M; Wong K; Beaussoubre P; Fieber W Angew Chem Int Ed Engl; 2013 Sep; 52(39):10334-8. PubMed ID: 23881535 [No Abstract] [Full Text] [Related]
22. Encapsulation of bilayer vesicles by self-assembly. Walker SA; Kennedy MT; Zasadzinski JA Nature; 1997 May; 387(6628):61-4. PubMed ID: 9139822 [TBL] [Abstract][Full Text] [Related]
23. Polymerizable vesicles based on a single-tailed fatty acid surfactant: a simple route to robust nanocontainers. Lee JH; Danino D; Raghavan SR Langmuir; 2009 Feb; 25(3):1566-71. PubMed ID: 19138066 [TBL] [Abstract][Full Text] [Related]
24. Stable vesicles composed of monocarboxylic or dicarboxylic fatty acids and trimethylammonium amphiphiles. Caschera F; Bernardino de la Serna J; Löffler PM; Rasmussen TE; Hanczyc MM; Bagatolli LA; Monnard PA Langmuir; 2011 Dec; 27(23):14078-90. PubMed ID: 21932777 [TBL] [Abstract][Full Text] [Related]
25. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Elani Y; Law RV; Ces O Nat Commun; 2014 Oct; 5():5305. PubMed ID: 25351716 [TBL] [Abstract][Full Text] [Related]
26. Oxygen carrier based on hemoglobin/poly(L-lysine)-block-poly(L-phenylalanine) vesicles. Sun J; Huang Y; Shi Q; Chen X; Jing X Langmuir; 2009 Dec; 25(24):13726-9. PubMed ID: 19459613 [TBL] [Abstract][Full Text] [Related]
27. High encapsulation efficiencies in sized liposomes produced by extrusion of dehydration-rehydration vesicles. Aliño SF; Garcia-Sanz M; Irruarrizaga A; Alfaro J; Hernandez J J Microencapsul; 1990; 7(4):497-503. PubMed ID: 2266475 [TBL] [Abstract][Full Text] [Related]
28. Functional properties of hemoglobin immobilized in coacervates prepared from gelatin A and polyanionic carbohydrates. Brouwer M; Cashon R; Bonaventura J Biotechnol Bioeng; 1990 Apr; 35(8):831-6. PubMed ID: 18592584 [TBL] [Abstract][Full Text] [Related]
29. Incorporation of proteins into complex coacervates. Blocher McTigue WC; Perry SL Methods Enzymol; 2021; 646():277-306. PubMed ID: 33453929 [TBL] [Abstract][Full Text] [Related]
30. Soft vesicles in the synthesis of hard materials. Dong R; Liu W; Hao J Acc Chem Res; 2012 Apr; 45(4):504-13. PubMed ID: 22257298 [TBL] [Abstract][Full Text] [Related]
31. Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection. Sun B; Chiu DT Anal Chem; 2005 May; 77(9):2770-6. PubMed ID: 15859592 [TBL] [Abstract][Full Text] [Related]
32. A kinetic study of the growth of fatty acid vesicles. Chen IA; Szostak JW Biophys J; 2004 Aug; 87(2):988-98. PubMed ID: 15298905 [TBL] [Abstract][Full Text] [Related]
33. Preparation of keratin-based microcapsules for encapsulation of hydrophilic molecules. Rajabinejad H; Patrucco A; Caringella R; Montarsolo A; Zoccola M; Pozzo PD Ultrason Sonochem; 2018 Jan; 40(Pt A):527-532. PubMed ID: 28946454 [TBL] [Abstract][Full Text] [Related]
34. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. Jain A; Thakur D; Ghoshal G; Katare OP; Shivhare US Int J Biol Macromol; 2016 Jun; 87():101-13. PubMed ID: 26851204 [TBL] [Abstract][Full Text] [Related]
35. Encapsulation of enzyme via one-step template-free formation of stable organic-inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability. Huang R; Wu M; Goldman MJ; Li Z Biotechnol Bioeng; 2015 Jun; 112(6):1092-101. PubMed ID: 25580912 [TBL] [Abstract][Full Text] [Related]
36. On the Assembly of Microreactors with Parallel Enzymatic Pathways. Armada-Moreira A; Thingholm B; Andreassen K; Sebastião AM; Vaz SH; Städler B Adv Biosyst; 2018 May; 2(5):e1700244. PubMed ID: 33103855 [TBL] [Abstract][Full Text] [Related]
37. Sodium Chloride Triggered the Fusion of Vesicle Composed of Fatty Acid Modified Protic Ionic Liquid: A New Insight into the Membrane Fusion Monitored through Fluorescence Lifetime Imaging Microscopy. Kundu N; Banerjee P; Kundu S; Dutta R; Sarkar N J Phys Chem B; 2017 Jan; 121(1):24-34. PubMed ID: 27959558 [TBL] [Abstract][Full Text] [Related]
38. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane. Hansen GH; Rasmussen K; Niels-Christiansen LL; Danielsen EM Mol Membr Biol; 2011 Feb; 28(2):136-44. PubMed ID: 21166483 [TBL] [Abstract][Full Text] [Related]
39. RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly. Aumiller WM; Pir Cakmak F; Davis BW; Keating CD Langmuir; 2016 Oct; 32(39):10042-10053. PubMed ID: 27599198 [TBL] [Abstract][Full Text] [Related]
40. Molecular recognition and organizational and polyvalent effects in vesicles induce the formation of artificial multicompartment cells as model systems of eukaryotes. Paleos CM; Pantos A Acc Chem Res; 2014 May; 47(5):1475-82. PubMed ID: 24735049 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]