BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27659988)

  • 1. Chromosome Conformation Capture in Primary Human Cells.
    Cortesi A; Bodega B
    Methods Mol Biol; 2016; 1480():213-21. PubMed ID: 27659988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A (3D-Nuclear) Space Odyssey: Making Sense of Hi-C Maps.
    Mota-Gómez I; Lupiáñez DG
    Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D genome organization and epigenetic regulation in autoimmune diseases.
    Qiu Y; Feng D; Jiang W; Zhang T; Lu Q; Zhao M
    Front Immunol; 2023; 14():1196123. PubMed ID: 37346038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational approaches for inferring 3D conformations of chromatin from chromosome conformation capture data.
    Meluzzi D; Arya G
    Methods; 2020 Oct; 181-182():24-34. PubMed ID: 31470090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5C-ID: Increased resolution Chromosome-Conformation-Capture-Carbon-Copy with in situ 3C and double alternating primer design.
    Kim JH; Titus KR; Gong W; Beagan JA; Cao Z; Phillips-Cremins JE
    Methods; 2018 Jun; 142():39-46. PubMed ID: 29772275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The macro and micro of chromosome conformation capture.
    Goel VY; Hansen AS
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e395. PubMed ID: 32987449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics-Based Chromosome Conformation Capture (3C) Technology for Examining Chromatin Organization with a Low Quantity of Cells.
    Sun C; Lu C
    Anal Chem; 2018 Mar; 90(6):3714-3719. PubMed ID: 29498513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Getting an A with the 3Cs: Chromosome Conformation Capture for Undergraduates.
    Joniec A; Leszczynski J; Ndoye S; Sylvia J; Weicksel SE
    J Vis Exp; 2023 May; (195):. PubMed ID: 37246873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Multiway Interactions with Tri-C.
    Oudelaar AM; Downes DJ; Hughes JR
    Methods Mol Biol; 2022; 2532():95-112. PubMed ID: 35867247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture.
    Lafontaine DL; Yang L; Dekker J; Gibcus JH
    Curr Protoc; 2021 Jul; 1(7):e198. PubMed ID: 34286910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafine mapping of chromosome conformation at hundred basepair resolution reveals regulatory genome architecture.
    Zhu Y; Rosenfeld MG; Suh Y
    Proc Natl Acad Sci U S A; 2023 Nov; 120(45):e2313285120. PubMed ID: 37922325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A decade of 3C technologies: insights into nuclear organization.
    de Wit E; de Laat W
    Genes Dev; 2012 Jan; 26(1):11-24. PubMed ID: 22215806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.
    Nagano T; Lubling Y; Stevens TJ; Schoenfelder S; Yaffe E; Dean W; Laue ED; Tanay A; Fraser P
    Nature; 2013 Oct; 502(7469):59-64. PubMed ID: 24067610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining spatial chromatin organization of large genomic regions using 5C technology.
    van Berkum NL; Dekker J
    Methods Mol Biol; 2009; 567():189-213. PubMed ID: 19588094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements.
    Dostie J; Richmond TA; Arnaout RA; Selzer RR; Lee WL; Honan TA; Rubio ED; Krumm A; Lamb J; Nusbaum C; Green RD; Dekker J
    Genome Res; 2006 Oct; 16(10):1299-309. PubMed ID: 16954542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization and data exploration of chromosome conformation capture data using Voronoi diagrams with v3c-viz.
    Race AM; Fuchs A; Chung HR
    Sci Rep; 2023 Dec; 13(1):22020. PubMed ID: 38086827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years.
    Zhang X; Wang T
    Plant Cell Physiol; 2021 Dec; 62(11):1648-1661. PubMed ID: 34486654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Prospective Study of Epigenetic Regulatory Profiles in Sport and Exercise Monitored Through Chromosome Conformation Signatures.
    Hall ECR; Murgatroyd C; Stebbings GK; Cunniffe B; Harle L; Salter M; Ramadass A; Westra JW; Hunter E; Akoulitchev A; Williams AG
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32784689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene regulation in the 3D genome.
    Li Y; Hu M; Shen Y
    Hum Mol Genet; 2018 Aug; 27(R2):R228-R233. PubMed ID: 29767704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization.
    Williamson I; Berlivet S; Eskeland R; Boyle S; Illingworth RS; Paquette D; Dostie J; Bickmore WA
    Genes Dev; 2014 Dec; 28(24):2778-91. PubMed ID: 25512564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.