BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27660334)

  • 1. Porous tantalum biocomposites for osteochondral defect repair: A follow-up study in a sheep model.
    Mrosek EH; Chung HW; Fitzsimmons JS; O'Driscoll SW; Reinholz GG; Schagemann JC
    Bone Joint Res; 2016 Sep; 5(9):403-11. PubMed ID: 27660334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous tantalum and poly-epsilon-caprolactone biocomposites for osteochondral defect repair: preliminary studies in rabbits.
    Mrosek EH; Schagemann JC; Chung HW; Fitzsimmons JS; Yaszemski MJ; Mardones RM; O'Driscoll SW; Reinholz GG
    J Orthop Res; 2010 Feb; 28(2):141-8. PubMed ID: 19743507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Domestic porous tantalum loaded with bone morphogenetic 7 in repairing osteochondral defect in rabbits].
    Zhang H; Wang Q; Gan H; Shi W; Liu Y; Zhang D; Li Q; Wang Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Jul; 30(7):836-842. PubMed ID: 29786319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results.
    Bernstein A; Niemeyer P; Salzmann G; Südkamp NP; Hube R; Klehm J; Menzel M; von Eisenhart-Rothe R; Bohner M; Görz L; Mayr HO
    Acta Biomater; 2013 Jul; 9(7):7490-505. PubMed ID: 23528497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of combined porous tantalum scaffolds loaded with bone morphogenetic protein 7 to repair of osteochondral defect in rabbits.
    Wang Q; Zhang H; Gan H; Wang H; Li Q; Wang Z
    Int Orthop; 2018 Jul; 42(7):1437-1448. PubMed ID: 29445961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Value of osteo-chondral paste autologous transplantation in experimental cartilage defects reconstruction. Part IV--Microscopic analysis of cellularity and of traits of necrosis in the defect-filling tissue].
    Jaroszewski J; Kruczyński J; Trzeciak T; Piontek T; Kaszuba B
    Chir Narzadow Ruchu Ortop Pol; 2004; 69(2):115-9. PubMed ID: 15307383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEOT/PBT based scaffolds with low mechanical properties improve cartilage repair tissue formation in osteochondral defects.
    Jansen EJ; Pieper J; Gijbels MJ; Guldemond NA; Riesle J; Van Rhijn LW; Bulstra SK; Kuijer R
    J Biomed Mater Res A; 2009 May; 89(2):444-52. PubMed ID: 18431789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a biologic prosthetic composite for cartilage repair.
    Mardones RM; Reinholz GG; Fitzsimmons JS; Zobitz ME; An KN; Lewallen DG; Yaszemski MJ; O'Driscoll SW
    Tissue Eng; 2005; 11(9-10):1368-78. PubMed ID: 16259592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of osteochondral defects in rabbits with ectopically produced cartilage.
    Emans PJ; Hulsbosch M; Wetzels GM; Bulstra SK; Kuijer R
    Tissue Eng; 2005; 11(11-12):1789-96. PubMed ID: 16411824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits.
    Chang NJ; Lam CF; Lin CC; Chen WL; Li CF; Lin YT; Yeh ML
    Osteoarthritis Cartilage; 2013 Oct; 21(10):1613-22. PubMed ID: 23927932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model.
    Getgood A; Henson F; Skelton C; Brooks R; Guehring H; Fortier LA; Rushton N
    J Exp Orthop; 2014 Dec; 1(1):13. PubMed ID: 26914758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds.
    de Mulder EL; Hannink G; van Kuppevelt TH; Daamen WF; Buma P
    Tissue Eng Part A; 2014 Feb; 20(3-4):635-45. PubMed ID: 24044726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: biomechanical results.
    Mayr HO; Klehm J; Schwan S; Hube R; Südkamp NP; Niemeyer P; Salzmann G; von Eisenhardt-Rothe R; Heilmann A; Bohner M; Bernstein A
    Acta Biomater; 2013 Jan; 9(1):4845-55. PubMed ID: 22885682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study.
    Jackson DW; Lalor PA; Aberman HM; Simon TM
    J Bone Joint Surg Am; 2001 Jan; 83(1):53-64. PubMed ID: 11205859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autologous tissue transplantations for osteochondral repair.
    Christensen BB
    Dan Med J; 2016 Apr; 63(4):. PubMed ID: 27034191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats.
    Wei X; Liu B; Liu G; Yang F; Cao F; Dou X; Yu W; Wang B; Zheng G; Cheng L; Ma Z; Zhang Y; Yang J; Wang Z; Li J; Cui D; Wang W; Xie H; Li L; Zhang F; Lineaweaver WC; Zhao D
    Stem Cell Res Ther; 2019 Mar; 10(1):72. PubMed ID: 30837004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage.
    Wakitani S; Goto T; Pineda SJ; Young RG; Mansour JM; Caplan AI; Goldberg VM
    J Bone Joint Surg Am; 1994 Apr; 76(4):579-92. PubMed ID: 8150826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cellularized Biphasic Implant Based on a Bioactive Silk Fibroin Promotes Integration and Tissue Organization during Osteochondral Defect Repair in a Porcine Model.
    Pérez-Silos V; Moncada-Saucedo NK; Peña-Martínez V; Lara-Arias J; Marino-Martínez IA; Camacho A; Romero-Díaz VJ; Lara Banda M; García-Ruiz A; Soto-Dominguez A; Rodriguez-Rocha H; López-Serna N; Tuan RS; Lin H; Fuentes-Mera L
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: Macroscopic and histological assessments.
    Kazemi D; Shams Asenjan K; Dehdilani N; Parsa H
    Bone Joint Res; 2017 Feb; 6(2):98-107. PubMed ID: 28235767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteochondral reconstruction of a non-weight-bearing joint using a high-density porous polyethylene implant.
    Weinzweig J; Pantaloni M; Spangenberger A; Marler J; Zienowicz RJ
    Plast Reconstr Surg; 2000 Dec; 106(7):1547-54. PubMed ID: 11129184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.