These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27661261)

  • 1. Improved Electrochemical Performance of LiFePO
    Wang P; Zhang G; Li Z; Sheng W; Zhang Y; Gu J; Zheng X; Cao F
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26908-26915. PubMed ID: 27661261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.
    Zhang J; Nie N; Liu Y; Wang J; Yu F; Gu J; Li W
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20134-43. PubMed ID: 26305802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Synthesis of Carbon-Coated Spinel Li
    Wang P; Zhang G; Cheng J; You Y; Li YK; Ding C; Gu JJ; Zheng XS; Zhang CF; Cao FF
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6138-6143. PubMed ID: 28121120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LiFePO4 nanoparticles enveloped in freestanding sandwich-like graphitized carbon sheets as enhanced remarkable lithium-ion battery cathode.
    Zhang Y; Zhang H; Li X; Xu H; Wang Y
    Nanotechnology; 2016 Apr; 27(15):155401. PubMed ID: 26934516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally assisted conversion of biowaste into environment-friendly energy storage materials for lithium-ion batteries.
    Ho CW; Shaji N; Kim HK; Park JW; Nanthagopal M; Lee CW
    Chemosphere; 2022 Jan; 286(Pt 1):131654. PubMed ID: 34325260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO
    Loveridge MJ; Lain MJ; Johnson ID; Roberts A; Beattie SD; Dashwood R; Darr JA; Bhagat R
    Sci Rep; 2016 Nov; 6():37787. PubMed ID: 27898104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unlocking the energy capabilities of micron-sized LiFePO4.
    Guo L; Zhang Y; Wang J; Ma L; Ma S; Zhang Y; Wang E; Bi Y; Wang D; McKee WC; Xu Y; Chen J; Zhang Q; Nan C; Gu L; Bruce PG; Peng Z
    Nat Commun; 2015 Aug; 6():7898. PubMed ID: 26235395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformal Coating Strategy Comprising N-doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO4.
    Zhang K; Lee JT; Li P; Kang B; Kim JH; Yi GR; Park JH
    Nano Lett; 2015 Oct; 15(10):6756-63. PubMed ID: 26389552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double Carbon Nano Coating of LiFePO4 Cathode Material for High Performance of Lithium Ion Batteries.
    Ding YH; Huang GL; Li HH; Xie HM; Sun HZ; Zhang JP
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9630-5. PubMed ID: 26682389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Electrochemical Performance of LiFePO
    Yi D; Cui X; Li N; Zhang L; Yang D
    ACS Omega; 2020 May; 5(17):9752-9758. PubMed ID: 32391462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Synthesis of LiFePO
    Zhang B; Wang S; Liu L; Li Y; Yang J
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass-Derived Carbon Utilization for Electrochemical Energy Enhancement in Lithium-Ion Batteries.
    Jeong BJ; Jiang F; Sung JY; Jung SP; Oh DW; Gnanamuthu RM; Vediappan K; Lee CW
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical characteristics of lithium iron phosphate with multi-walled carbon nanotube for lithium polymer batteries.
    Jin EM; Jin B; Park KH; Gu HB; Park GC; Kim KW
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5057-61. PubMed ID: 19198390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery.
    Wang X; Zhang W; Huang Y; Xia T; Lian Y
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6494-7. PubMed ID: 27427742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic N/Mn Codoping Deagglomerate Carbon Coating of LiFePO
    Wang YW; Tang JJ; Liu J; Lv SZ; Hou JJ; Wu CD; Wang JH; Qiu J; Deng L; Zhao L; Wang ZB
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33723-33732. PubMed ID: 38913623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly crystalline lithium titanium oxide sheets coated with nitrogen-doped carbon enable high-rate lithium-ion batteries.
    Han C; He YB; Li B; Li H; Ma J; Du H; Qin X; Yang QH; Kang F
    ChemSusChem; 2014 Sep; 7(9):2567-74. PubMed ID: 25044966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage.
    Wang B; Liu A; Abdulla WA; Wang D; Zhao XS
    Nanoscale; 2015 May; 7(19):8819-28. PubMed ID: 25908535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of graphene embedded LiFePO₄ using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries.
    Kim W; Ryu W; Han D; Lim S; Eom J; Kwon H
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4731-6. PubMed ID: 24621267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability.
    Zhang Q; Huang SZ; Jin J; Liu J; Li Y; Wang HE; Chen LH; Wang BJ; Su BL
    Sci Rep; 2016 May; 6():25942. PubMed ID: 27181195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.