BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27661571)

  • 21. Two electric field Monte Carlo models of coherent backscattering of polarized light.
    Doronin A; Radosevich AJ; Backman V; Meglinski I
    J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2394-400. PubMed ID: 25401350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.
    Cui JY; Pratx G; Prevrhal S; Levin CS
    Med Phys; 2011 Dec; 38(12):6775-86. PubMed ID: 22149859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-fast hybrid CPU-GPU multiple scatter simulation for 3-D PET.
    Kim KS; Son YD; Cho ZH; Ra JB; Ye JC
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):148-56. PubMed ID: 24403412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GMC: a GPU implementation of a Monte Carlo dose calculation based on Geant4.
    Jahnke L; Fleckenstein J; Wenz F; Hesser J
    Phys Med Biol; 2012 Mar; 57(5):1217-29. PubMed ID: 22330587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clinical implementation of a GPU-based simplified Monte Carlo method for a treatment planning system of proton beam therapy.
    Kohno R; Hotta K; Nishioka S; Matsubara K; Tansho R; Suzuki T
    Phys Med Biol; 2011 Nov; 56(22):N287-94. PubMed ID: 22036894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CPU-GPU-coupled acceleration method for point flux calculation in Monte Carlo particle transport.
    Yanheng P; Zhen W; Yisheng H; Shenshen G; Rui Q; Hui Z; Junli L
    Radiat Prot Dosimetry; 2024 Apr; 200(6):525-537. PubMed ID: 38411255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GPUMCD: A new GPU-oriented Monte Carlo dose calculation platform.
    Hissoiny S; Ozell B; Bouchard H; Després P
    Med Phys; 2011 Feb; 38(2):754-64. PubMed ID: 21452713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Web-based, GPU-accelerated, Monte Carlo simulation and visualization of indirect radiation imaging detector performance.
    Dong H; Sharma D; Badano A
    Med Phys; 2014 Dec; 41(12):121907. PubMed ID: 25471967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computation of induced dipoles in molecular mechanics simulations using graphics processors.
    Pratas F; Sousa L; Dieterich JM; Mata RA
    J Chem Inf Model; 2012 May; 52(5):1159-66. PubMed ID: 22536925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. hybridMANTIS: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators.
    Sharma D; Badal A; Badano A
    Phys Med Biol; 2012 Apr; 57(8):2357-72. PubMed ID: 22469917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerated event-by-event Monte Carlo microdosimetric calculations of electrons and protons tracks on a multi-core CPU and a CUDA-enabled GPU.
    Kalantzis G; Tachibana H
    Comput Methods Programs Biomed; 2014; 113(1):116-25. PubMed ID: 24113420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accelerating All-Atom Normal Mode Analysis with Graphics Processing Unit.
    Liu L; Liu X; Gong J; Jiang H; Li H
    J Chem Theory Comput; 2011 Jun; 7(6):1595-603. PubMed ID: 26596427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues.
    Peng K; Gao X; Qu X; Ren N; Chen X; He X; Wang X; Liang J; Tian J
    Appl Opt; 2011 Jul; 50(21):3808-23. PubMed ID: 21772362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms.
    Yu L; Nina-Paravecino F; Kaeli D; Fang Q
    J Biomed Opt; 2018 Jan; 23(1):1-4. PubMed ID: 29374404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.
    Shen W; Wei D; Xu W; Zhu X; Yuan S
    Comput Methods Programs Biomed; 2010 Oct; 100(1):87-96. PubMed ID: 20674066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parallel Implementation of Density Functional Theory Methods in the Quantum Interaction Computational Kernel Program.
    Manathunga M; Miao Y; Mu D; Götz AW; Merz KM
    J Chem Theory Comput; 2020 Jul; 16(7):4315-4326. PubMed ID: 32511916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient implementation of MrBayes on multi-GPU.
    Bao J; Xia H; Zhou J; Liu X; Wang G
    Mol Biol Evol; 2013 Jun; 30(6):1471-9. PubMed ID: 23493260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GPU-based prompt gamma ray imaging from boron neutron capture therapy.
    Yoon DK; Jung JY; Jo Hong K; Sil Lee K; Suk Suh T
    Med Phys; 2015 Jan; 42(1):165-9. PubMed ID: 25563257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources.
    Townson RW; Jia X; Tian Z; Graves YJ; Zavgorodni S; Jiang SB
    Phys Med Biol; 2013 Jun; 58(12):4341-56. PubMed ID: 23732697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.