These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27661694)

  • 1. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids.
    Vakarelski IU; Berry JD; Chan DY; Thoroddsen ST
    Phys Rev Lett; 2016 Sep; 117(11):114503. PubMed ID: 27661694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drag reduction by Leidenfrost vapor layers.
    Vakarelski IU; Marston JO; Chan DY; Thoroddsen ST
    Phys Rev Lett; 2011 May; 106(21):214501. PubMed ID: 21699302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.
    Vakarelski IU; Chan DY; Thoroddsen ST
    Soft Matter; 2014 Aug; 10(31):5662-8. PubMed ID: 24849267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.
    Jetly A; Vakarelski IU; Thoroddsen ST
    Soft Matter; 2018 Feb; 14(9):1608-1613. PubMed ID: 29411833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip flow of diverse liquids on robust superomniphobic surfaces.
    Wu Y; Cai M; Li Z; Song X; Wang H; Pei X; Zhou F
    J Colloid Interface Sci; 2014 Jan; 414():9-13. PubMed ID: 24231078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Grafting Hydrophilic Polymeric Layer for Stable Drag Reduction.
    Tian C; Wang X; Liu Y; Yang W; Hu H; Pei X; Zhou F
    Langmuir; 2019 Jun; 35(22):7205-7211. PubMed ID: 31083953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D simulations of hydrodynamic drag forces on two porous spheres moving along their centerline.
    Wu RM; Lin MH; Lin HY; Hsu RY
    J Colloid Interface Sci; 2006 Sep; 301(1):227-35. PubMed ID: 16730016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).
    Ahmmed KM; Patience C; Kietzig AM
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27411-27419. PubMed ID: 27649381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drag Moderation by the Melting of an Ice Surface in Contact with Water.
    Vakarelski IU; Chan DY; Thoroddsen ST
    Phys Rev Lett; 2015 Jul; 115(4):044501. PubMed ID: 26252689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Drag Crisis Phenomenon on an Elite Road Cyclist-A Preliminary Numerical Simulations Analysis in the Aero Position at Different Speeds.
    Forte P; Morais JE; P Neiva H; Barbosa TM; Marinho DA
    Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32664605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propulsion mechanisms for Leidenfrost solids on ratchets.
    Baier T; Dupeux G; Herbert S; Hardt S; Quéré D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):021001. PubMed ID: 23496452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-determined shapes and velocities of giant near-zero drag gas cavities.
    Vakarelski IU; Klaseboer E; Jetly A; Mansoor MM; Aguirre-Pablo AA; Chan DYC; Thoroddsen ST
    Sci Adv; 2017 Sep; 3(9):e1701558. PubMed ID: 28913434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drag reduction using lubricant-impregnated surfaces in viscous laminar flow.
    Solomon BR; Khalil KS; Varanasi KK
    Langmuir; 2014 Sep; 30(36):10970-6. PubMed ID: 25144426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translation and rotation of slightly deformed colloidal spheres experiencing slip.
    Chang YC; Keh HJ
    J Colloid Interface Sci; 2009 Feb; 330(1):201-10. PubMed ID: 19012900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nanoscale Leidenfrost effect.
    Rodrigues J; Desai S
    Nanoscale; 2019 Jul; 11(25):12139-12151. PubMed ID: 31192326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobility of permeable fractal agglomerates in slip regime.
    Vainshtein P; Shapiro M
    J Colloid Interface Sci; 2005 Apr; 284(2):501-9. PubMed ID: 15780288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimum Leidenfrost Temperature on Smooth Surfaces.
    Harvey D; Harper JM; Burton JC
    Phys Rev Lett; 2021 Sep; 127(10):104501. PubMed ID: 34533336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drag reduction in the turbulent Kolmogorov flow.
    Boffetta G; Celani A; Mazzino A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036307. PubMed ID: 15903574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.