These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 27661709)

  • 21. Collective modes of massive Dirac fermions in armchair graphene nanoribbons.
    Andersen DR; Raza H
    J Phys Condens Matter; 2013 Jan; 25(4):045303. PubMed ID: 23257918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum finite-size effects in graphene plasmons.
    Thongrattanasiri S; Manjavacas A; García de Abajo FJ
    ACS Nano; 2012 Feb; 6(2):1766-75. PubMed ID: 22217250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field.
    Saroka VA; Batrakov KG; Demin VA; Chernozatonskii LA
    J Phys Condens Matter; 2015 Apr; 27(14):145305. PubMed ID: 25791088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate phonon-mediated plasmon hybridization in coplanar graphene nanostructures for broadband plasmonic circuits.
    Yang X; Kong XT; Bai B; Li Z; Hu H; Qiu X; Dai Q
    Small; 2015 Feb; 11(5):591-6. PubMed ID: 25273326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning aromaticity patterns and electronic properties of armchair graphene nanoribbons with chemical edge functionalisation.
    Martin-Martinez FJ; Fias S; Van Lier G; De Proft F; Geerlings P
    Phys Chem Chem Phys; 2013 Aug; 15(30):12637-47. PubMed ID: 23787877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons.
    Talirz L; Söde H; Dumslaff T; Wang S; Sanchez-Valencia JR; Liu J; Shinde P; Pignedoli CA; Liang L; Meunier V; Plumb NC; Shi M; Feng X; Narita A; Müllen K; Fasel R; Ruffieux P
    ACS Nano; 2017 Feb; 11(2):1380-1388. PubMed ID: 28129507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localized plasmonic field enhancement in shaped graphene nanoribbons.
    Xia SX; Zhai X; Wang LL; Lin Q; Wen SC
    Opt Express; 2016 Jul; 24(15):16336-48. PubMed ID: 27464087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study.
    Liang Y; Wang V; Mizuseki H; Kawazoe Y
    J Phys Condens Matter; 2012 Nov; 24(45):455302. PubMed ID: 23085744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bond length pattern associated with charge carriers in armchair graphene nanoribbons.
    Teixeira JF; de Oliveira Neto PH; da Cunha WF; Ribeiro LA; E Silva GM
    J Mol Model; 2017 Sep; 23(10):293. PubMed ID: 28951991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topological Structure Realized in Cove-Edged Graphene Nanoribbons via Incorporation of Periodic Pentagon Rings.
    Zhu X; Li K; Liu J; Wang Z; Ding Z; Su Y; Yang B; Yan K; Li G; Yu P
    J Am Chem Soc; 2024 Mar; 146(11):7152-7158. PubMed ID: 38421279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons.
    Nong J; Wei W; Wang W; Lan G; Shang Z; Yi J; Tang L
    Opt Express; 2018 Jan; 26(2):1633-1644. PubMed ID: 29402035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.
    Li YY; Chen MX; Weinert M; Li L
    Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seed-Initiated Anisotropic Growth of Unidirectional Armchair Graphene Nanoribbon Arrays on Germanium.
    Way AJ; Jacobberger RM; Arnold MS
    Nano Lett; 2018 Feb; 18(2):898-906. PubMed ID: 29382200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering Edge States of Graphene Nanoribbons for Narrow-Band Photoluminescence.
    Ma C; Xiao Z; Puretzky AA; Wang H; Mohsin A; Huang J; Liang L; Luo Y; Lawrie BJ; Gu G; Lu W; Hong K; Bernholc J; Li AP
    ACS Nano; 2020 Apr; 14(4):5090-5098. PubMed ID: 32283017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube.
    Kou L; Tang C; Frauenheim T; Chen C
    J Phys Chem Lett; 2013 Apr; 4(8):1328-33. PubMed ID: 26282148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stacking stability, emergence of magnetization and electromechanical nanosensing in bilayer graphene nanoribbons.
    Paulla KK; Farajian AA
    J Phys Condens Matter; 2013 Mar; 25(11):115303. PubMed ID: 23406963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging the Localized Plasmon Resonance Modes in Graphene Nanoribbons.
    Hu F; Luan Y; Fei Z; Palubski IZ; Goldflam MD; Dai S; Wu JS; Post KW; Janssen GCAM; Fogler MM; Basov DN
    Nano Lett; 2017 Sep; 17(9):5423-5428. PubMed ID: 28806525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship Between Stress Modulated Metallicity and Plasmon in Graphene Nanoribbons.
    Zhang N; Yang Z; Zhang Z; Wang J
    Chemphyschem; 2023 Dec; 24(24):e202300348. PubMed ID: 37731169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrically Induced Dirac Fermions in Graphene Nanoribbons.
    Pizzochero M; Tepliakov NV; Mostofi AA; Kaxiras E
    Nano Lett; 2021 Nov; 21(21):9332-9338. PubMed ID: 34714095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene nanoribbons anchored to SiC substrates.
    Le NB; Woods LM
    J Phys Condens Matter; 2016 Sep; 28(36):364001. PubMed ID: 27392014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.