These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 27661709)

  • 41. Understanding the Optical Properties of Doped and Undoped 9-Armchair Graphene Nanoribbons in Dispersion.
    Lindenthal S; Fazzi D; Zorn NF; El Yumin AA; Settele S; Weidinger B; Blasco E; Zaumseil J
    ACS Nano; 2023 Sep; 17(18):18240-18252. PubMed ID: 37695780
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electronic structure and stability of semiconducting graphene nanoribbons.
    Barone V; Hod O; Scuseria GE
    Nano Lett; 2006 Dec; 6(12):2748-54. PubMed ID: 17163699
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physical origins of weak H2 binding on carbon nanostructures: insight from ab initio studies of chemically functionalized graphene nanoribbons.
    Ulman K; Bhaumik D; Wood BC; Narasimhan S
    J Chem Phys; 2014 May; 140(17):174708. PubMed ID: 24811656
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Energy gaps in supramolecular functionalized graphene nanoribbons.
    Nduwimana A; Wang XQ
    ACS Nano; 2009 Jul; 3(7):1995-9. PubMed ID: 19548689
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On-surface synthesis of graphene nanoribbons with zigzag edge topology.
    Ruffieux P; Wang S; Yang B; Sánchez-Sánchez C; Liu J; Dienel T; Talirz L; Shinde P; Pignedoli CA; Passerone D; Dumslaff T; Feng X; Müllen K; Fasel R
    Nature; 2016 Mar; 531(7595):489-92. PubMed ID: 27008967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy gaps in graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations.
    Lee H
    J Phys Condens Matter; 2010 Sep; 22(35):352205. PubMed ID: 21403278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study.
    Bilić A; Sanvito S
    J Phys Condens Matter; 2013 Jul; 25(27):275301. PubMed ID: 23765375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons.
    Blankenburg S; Cai J; Ruffieux P; Jaafar R; Passerone D; Feng X; Müllen K; Fasel R; Pignedoli CA
    ACS Nano; 2012 Mar; 6(3):2020-5. PubMed ID: 22324827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-Dimensional Carbon Allotropes and Nanoribbons based on 2,6-Polyazulene Chains: Stacking Stabilities and Electronic Properties.
    Li J; Li S; Ouyang T; Zhang C; Tang C; He C; Zhong J
    J Phys Chem Lett; 2021 Jan; 12(2):732-738. PubMed ID: 33405929
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrothermal Control of Graphene Plasmon-Phonon Polaritons.
    Guo Q; Guinea F; Deng B; Sarpkaya I; Li C; Chen C; Ling X; Kong J; Xia F
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28621022
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Edge Disorder in Bottom-Up Zigzag Graphene Nanoribbons: Implications for Magnetism and Quantum Electronic Transport.
    Pizzochero M; Barin GB; Čerņevičs KN; Wang S; Ruffieux P; Fasel R; Yazyev OV
    J Phys Chem Lett; 2021 May; 12(19):4692-4696. PubMed ID: 33979153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Infra-Red Active Dirac Plasmon Serie in Potassium Doped-Graphene (KC
    Jakovac J; Marušić L; Andrade-Guevara D; Chacón-Torres JC; Despoja V
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361450
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physical mechanism on edge-dependent electrons transfer in graphene in mid infrared region.
    Mu X; Chai J; Wang J; Li Y; Sun M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():136-145. PubMed ID: 30884352
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxygen surface functionalization of graphene nanoribbons for transport gap engineering.
    Cresti A; Lopez-Bezanilla A; Ordejón P; Roche S
    ACS Nano; 2011 Nov; 5(11):9271-7. PubMed ID: 21985521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adatom bond-induced geometric and electronic properties of passivated armchair graphene nanoribbons.
    Lin YT; Chung HC; Yang PH; Lin SY; Lin MF
    Phys Chem Chem Phys; 2015 Jul; 17(25):16545-52. PubMed ID: 26051862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.