BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27661719)

  • 1. Collective Motion of Microorganisms in a Viscoelastic Fluid.
    Li G; Ardekani AM
    Phys Rev Lett; 2016 Sep; 117(11):118001. PubMed ID: 27661719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of coherent structures and large-scale flows in motile suspensions.
    Saintillan D; Shelley MJ
    J R Soc Interface; 2012 Mar; 9(68):571-85. PubMed ID: 21865254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical mechanics and hydrodynamics of bacterial suspensions.
    Baskaran A; Marchetti MC
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15567-72. PubMed ID: 19717428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluctuating hydrodynamics and microrheology of a dilute suspension of swimming bacteria.
    Lau AW; Lubensky TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011917. PubMed ID: 19658739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective chemotactic dynamics in the presence of self-generated fluid flows.
    Lushi E; Goldstein RE; Shelley MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):040902. PubMed ID: 23214522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid.
    Yazdi S; Ardekani AM; Borhan A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043002. PubMed ID: 25375589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of a microorganism in a sheared viscoelastic liquid.
    De Corato M; D'Avino G
    Soft Matter; 2016 Dec; 13(1):196-211. PubMed ID: 27414249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement.
    Zöttl A; Stark H
    Phys Rev Lett; 2014 Mar; 112(11):118101. PubMed ID: 24702421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of viscoelasticity on the collective behavior of swimming microorganisms.
    Bozorgi Y; Underhill PT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061901. PubMed ID: 22304110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow properties and hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetric Mixtures of Pusher and Puller Microswimmers Behave as Noninteracting Suspensions.
    Bárdfalvy D; Anjum S; Nardini C; Morozov A; Stenhammar J
    Phys Rev Lett; 2020 Jul; 125(1):018003. PubMed ID: 32678625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of ellipsoidal tracers in swimming algal suspensions.
    Yang O; Peng Y; Liu Z; Tang C; Xu X; Cheng X
    Phys Rev E; 2016 Oct; 94(4-1):042601. PubMed ID: 27841492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extensional rheology of active suspensions.
    Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056307. PubMed ID: 20866322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical properties of collective motion in suspensions of bacteria.
    Sokolov A; Aranson IS
    Phys Rev Lett; 2012 Dec; 109(24):248109. PubMed ID: 23368392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions.
    Reinken H; Klapp SHL; Bär M; Heidenreich S
    Phys Rev E; 2018 Feb; 97(2-1):022613. PubMed ID: 29548118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic Interactions, Hidden Order, and Emergent Collective Behavior in an Active Bacterial Suspension.
    Pierce CJ; Wijesinghe H; Mumper E; Lower BH; Lower SK; Sooryakumar R
    Phys Rev Lett; 2018 Nov; 121(18):188001. PubMed ID: 30444412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alignment and propulsion of squirmer pusher-puller dumbbells.
    Clopés J; Gompper G; Winkler RG
    J Chem Phys; 2022 May; 156(19):194901. PubMed ID: 35597650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid.
    Ardekani AM; Gore E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056309. PubMed ID: 23004864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
    Schaar K; Zöttl A; Stark H
    Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.