These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27661723)

  • 1. Removal of phyto-accessible copper from contaminated soils using zero valent iron amendment and magnetic separation methods: Assessment of residual toxicity using plant and MetPLATE™ studies.
    Feng N; Ghoveisi H; Bitton G; Bonzongo JJ
    Environ Pollut; 2016 Dec; 219():9-18. PubMed ID: 27661723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic immobilization and removal in contaminated soil using zero-valent iron or magnetic biochar amendment followed by dry magnetic separation.
    Li J; Zhang Y; Wang F; Wang L; Liu J; Hashimoto Y; Hosomi M
    Sci Total Environ; 2021 May; 768():144521. PubMed ID: 33450681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of biochar and zero valent iron on the bioavailability and potential toxicity of heavy metals in contaminated soil at the field scale.
    Li Q; Yin J; Wu L; Li S; Chen L
    Sci Total Environ; 2023 Nov; 897():165386. PubMed ID: 37423275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous remediation of co-contaminated soil by ball-milled zero-valent iron coupled with persulfate oxidation.
    Xue C; Yi Y; Zhou L; Fang Z
    J Environ Manage; 2023 Aug; 340():118004. PubMed ID: 37119628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero valent iron or Fe
    Duan L; Wang Q; Li J; Wang F; Yang H; Guo B; Hashimoto Y
    Environ Pollut; 2022 Sep; 308():119702. PubMed ID: 35787422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated metolachlor degradation in soil by zerovalent iron and compost amendments.
    Kim SC; Yang JE; Ok YS; Skousen J; Kim DG; Joo JH
    Bull Environ Contam Toxicol; 2010 Apr; 84(4):459-64. PubMed ID: 20352186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of biochar and zero-valent iron for in-situ remediation of chromated copper arsenate contaminated soil.
    Frick H; Tardif S; Kandeler E; Holm PE; Brandt KK
    Sci Total Environ; 2019 Mar; 655():414-422. PubMed ID: 30472643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic impact of two autochthonous saprobic fungi (
    Nazir A; Sarfraz W; Allah D; Khalid N; Farid M; Shafiq M; Bareen FE; Rizvi ZF; Naeem N
    Int J Phytoremediation; 2023; 25(11):1488-1500. PubMed ID: 36633455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of type-A, type-B, and borderline metals from contaminated soils using zero valent iron and magnetic separation technology: A predictive approach for metal resources recovery.
    Alhadidi QA; Zhou Z; Quiñones Deliz KY; Greenslet HY; Bonzongo JJ
    Chemosphere; 2021 Jul; 274():129980. PubMed ID: 33979933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective immobilization and biosafety assessment of antimony in soil with zeolite-supported nanoscale zero-valent iron.
    Zhao Y; Zhang X; Xue H; Gong B; Li Q; Guo W; Meng X
    Environ Pollut; 2024 Jul; 352():124082. PubMed ID: 38697246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite.
    Malandrino M; Abollino O; Buoso S; Giacomino A; La Gioia C; Mentasti E
    Chemosphere; 2011 Jan; 82(2):169-78. PubMed ID: 21055788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of a silicon-iron amendment from acid-extracted copper tailings for remediating multi-metal-contaminated soils.
    Mu J; Hu Z; Huang L; Xie Z; Holm PE
    Environ Pollut; 2020 Feb; 257():113565. PubMed ID: 31733972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil.
    Wang X; Jia Y
    Environ Sci Pollut Res Int; 2010 Aug; 17(7):1331-8. PubMed ID: 20340050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilisation of metal(loid)s in two contaminated soils using micro and nano zerovalent iron particles: Evaluating the long-term stability.
    Danila V; Kumpiene J; Kasiuliene A; Vasarevičius S
    Chemosphere; 2020 Jun; 248():126054. PubMed ID: 32023510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus).
    Rahman MM; Azirun SM; Boyce AN
    PLoS One; 2013; 8(5):e62941. PubMed ID: 23667546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of the efficacy of biochar and zero-valent iron nanoparticles in reducing lead toxicity in wheat (Triticum aestivum L.).
    Nauman Mahamood M; Zhu S; Noman A; Mahmood A; Ashraf S; Aqeel M; Ibrahim M; Ashraf S; Liew RK; Lam SS; Irshad MK
    Environ Pollut; 2023 Feb; 319():120979. PubMed ID: 36586554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amendments promote the development of Lolium perenne in soils affected by historical copper smelting operations.
    Goecke P; Ginocchio R; Mench M; Neaman A
    Int J Phytoremediation; 2011 Jul; 13(6):552-66. PubMed ID: 21972502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils.
    Qiao JT; Liu TX; Wang XQ; Li FB; Lv YH; Cui JH; Zeng XD; Yuan YZ; Liu CP
    Chemosphere; 2018 Mar; 195():260-271. PubMed ID: 29272795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper-pyrene co-contaminated soil.
    Chigbo C; Batty L; Bartlett R
    Chemosphere; 2013 Mar; 90(10):2542-8. PubMed ID: 23237298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.