These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27661727)

  • 21. An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection.
    Carboni A; Emke E; Parsons JR; Kalbitz K; de Voogt P
    Anal Chim Acta; 2014 Jan; 807():159-65. PubMed ID: 24356233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative trace analysis of fullerenes in river sediment from Spain and soils from Saudi Arabia.
    Sanchís J; Božović D; Al-Harbi NA; Silva LF; Farré M; Barceló D
    Anal Bioanal Chem; 2013 Jul; 405(18):5915-23. PubMed ID: 23545859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fullerenes C60 and C70 in flames.
    Howard JB; McKinnon JT; Makarovsky Y; Lafleur AL; Johnson ME
    Nature; 1991 Jul; 352(6331):139-41. PubMed ID: 2067575
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport and retention of fullerene nanoparticles in natural soils.
    Wang Y; Li Y; Kim H; Walker SL; Abriola LM; Pennell KD
    J Environ Qual; 2010; 39(6):1925-33. PubMed ID: 21284289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is there evidence for man-made nanoparticles in the Dutch environment?
    Bäuerlein PS; Emke E; Tromp P; Hofman JAMH; Carboni A; Schooneman F; de Voogt P; van Wezel AP
    Sci Total Environ; 2017 Jan; 576():273-283. PubMed ID: 27788442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. C60 and C70 fullerene isomers generated in flames. Detection and verification by liquid chromatography/mass spectrometry analyses.
    Anacleto JF; Perreault H; Boyd RK; Pleasance S; Quilliam MA; Sim PG; Howard JB; Makarovsky Y; Lafleur AL
    Rapid Commun Mass Spectrom; 1992 Mar; 6(3):214-20. PubMed ID: 1554901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorption of nano-C60 clusters in soil: hydrophilic or hydrophobic interactions?
    Forouzangohar M; Kookana RS
    J Environ Monit; 2011 May; 13(5):1190-4. PubMed ID: 21394375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uraninite and fullerene in atmospheric particulates.
    Utsunomiya S; Jensen KA; Keeler GJ; Ewing RC
    Environ Sci Technol; 2002 Dec; 36(23):4943-7. PubMed ID: 12523404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China.
    Wei Z; Wu G; Su R; Li C; Liang P
    Environ Toxicol Chem; 2011 Sep; 30(9):1997-2003. PubMed ID: 21713969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beyond nC60: strategies for identification of transformation products of fullerene oxidation in aquatic and biological samples.
    Pycke BF; Chao TC; Herckes P; Westerhoff P; Halden RU
    Anal Bioanal Chem; 2012 Nov; 404(9):2583-95. PubMed ID: 22644149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trace analysis of fullerenes in biological samples by simplified liquid-liquid extraction and high-performance liquid chromatography.
    Xia XR; Monteiro-Riviere NA; Riviere JE
    J Chromatogr A; 2006 Oct; 1129(2):216-22. PubMed ID: 16879833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil.
    Oyelami AO; Semple KT
    Environ Sci Process Impacts; 2015 Jul; 17(7):1302-10. PubMed ID: 26067741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of fullerenes (C60 and C70) in commercial cosmetics.
    Benn TM; Westerhoff P; Herckes P
    Environ Pollut; 2011 May; 159(5):1334-42. PubMed ID: 21300421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry.
    Isaacson CW; Bouchard D
    J Chromatogr A; 2010 Feb; 1217(9):1506-12. PubMed ID: 20070969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A screening study on the fate of fullerenes (nC60 ) and their toxic implications in natural freshwaters.
    Pakarinen K; Petersen EJ; Alvila L; Waissi-Leinonen GC; Akkanen J; Leppänen MT; Kukkonen JV
    Environ Toxicol Chem; 2013 Jun; 32(6):1224-32. PubMed ID: 23404765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of fullerenes (C60) in artificial sediments by liquid chromatography.
    Wang J; Cai Q; Fang Y; Anderson TA; Cobb GP
    Talanta; 2011 Dec; 87():35-9. PubMed ID: 22099645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A rapid procedure for the determination of C60 and C70 fullerenes in soil and sediments by ultrasound-assisted extraction and HPLC-UV.
    Pérez RA; Albero B; Miguel E; Tadeo JL; Sánchez-Brunete C
    Anal Sci; 2013; 29(5):533-8. PubMed ID: 23665626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment.
    Saikia J; Narzary B; Roy S; Bordoloi M; Saikia P; Saikia BK
    Chemosphere; 2016 Dec; 164():84-91. PubMed ID: 27580261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs, BPCA and alkylated PAHs.
    Hindersmann B; Achten C
    Environ Pollut; 2018 Nov; 242(Pt B):1217-1225. PubMed ID: 30114601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.