These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27661727)

  • 41. PAHs and PCBs in an Eastern Mediterranean megacity, Istanbul: Their spatial and temporal distributions, air-soil exchange and toxicological effects.
    Cetin B; Ozturk F; Keles M; Yurdakul S
    Environ Pollut; 2017 Jan; 220(Pt B):1322-1332. PubMed ID: 27825846
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence.
    Rankin K; Mabury SA; Jenkins TM; Washington JW
    Chemosphere; 2016 Oct; 161():333-341. PubMed ID: 27441993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoparticle tracking analysis characterisation and parts-per-quadrillion determination of fullerenes in river samples from Barcelona catchment area.
    Sanchís J; Bosch-Orea C; Farré M; Barceló D
    Anal Bioanal Chem; 2015 Jun; 407(15):4261-75. PubMed ID: 25404164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry.
    Botero-Coy AM; Ibáñez M; Sancho JV; Hernández F
    J Chromatogr A; 2013 May; 1292():132-41. PubMed ID: 23332301
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Speciation of organometallic compounds in environmental samples by gas chromatography after flow preconcentration on fullerenes and nanotubes.
    Muñoz J; Gallego M; Valcárcel M
    Anal Chem; 2005 Aug; 77(16):5389-95. PubMed ID: 16097785
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment.
    Zhou Y; Aamir M; Liu K; Yang F; Liu W
    Environ Pollut; 2018 Sep; 240():116-124. PubMed ID: 29730420
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fullerene Radiolysis in Astrophysical Ice Analogs: A Mass Spectrometric Study of the Products.
    Ursini O; Angelini G; Cataldo F; Iglesias-Groth S
    Astrobiology; 2019 Jul; 19(7):903-914. PubMed ID: 31314590
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China.
    Luo W; Lu Y; Wang B; Tong X; Wang G; Shi Y; Wang T; Giesy JP
    Environ Monit Assess; 2009 Nov; 158(1-4):507-17. PubMed ID: 18972213
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectroscopic and theoretical insights on effective and selective non-covalent binding between fullerenes (C60 and C70) and a designed diporphyrin in solution.
    Mukherjee S; Bauri AK; Bhattacharya S
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():835-9. PubMed ID: 23892346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-aqueous capillary electrophoresis separation of fullerenes and C60 fullerene derivatives.
    Astefanei A; Núñez O; Galceran MT
    Anal Bioanal Chem; 2012 Aug; 404(2):307-13. PubMed ID: 22526671
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Widespread polybrominated diphenyl ether (PBDE) contamination of urban soils in Melbourne, Australia.
    McGrath TJ; Morrison PD; Sandiford CJ; Ball AS; Clarke BO
    Chemosphere; 2016 Dec; 164():225-232. PubMed ID: 27588576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facilitated transport of 2,2',5,5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns.
    Zhang L; Wang L; Zhang P; Kan AT; Chen W; Tomson MB
    Environ Sci Technol; 2011 Feb; 45(4):1341-8. PubMed ID: 21254786
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Source and distribution characteristics of polycyclic aromatic hydrocarbons in agricultural soils in the Pearl River Delta].
    Yang GY; Zhang TB; Gao ST; Guo ZX; Wan HF; Gao YX
    Huan Jing Ke Xue; 2007 Oct; 28(10):2350-4. PubMed ID: 18269004
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monitoring and treatment of selected nanoparticles.
    Bruchet A; Charles P; Janex Habibi ML; Glucina K
    Water Sci Technol; 2013; 68(7):1454-60. PubMed ID: 24135092
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Testing the resistance of fullerenes to chemothermal oxidation used to isolate soots from environmental samples.
    Flores-Cervantes DX; Bucheli TD
    Environ Pollut; 2011 Dec; 159(12):3793-6. PubMed ID: 21872974
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Environmental assessment of PAHs in soils around the Anhui Coal District, China.
    Wang R; Liu G; Chou CL; Liu J; Zhang J
    Arch Environ Contam Toxicol; 2010 Jul; 59(1):62-70. PubMed ID: 20091163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling the transport and retention of nC60 nanoparticles in the subsurface under different release scenarios.
    Bai C; Li Y
    J Contam Hydrol; 2012 Aug; 136-137():43-55. PubMed ID: 22683828
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photophysical insights into supramolecular interaction of a designed bisporphyrin with fullerenes C60 and C70.
    Pal D; Furukawa M; Komatsu N; Uno H; Bhattacharya S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):185-90. PubMed ID: 20947414
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time resolved spectroscopy and gain studies of Fullerenes C60 and C70.
    Qaiser D; Khan MS; Singh RD; Khan ZH
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Sep; 113():400-7. PubMed ID: 23747380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The feasibility of isolation and detection of fullerenes and carbon nanotubes using the benzene polycarboxylic acid method.
    Ziolkowski LA; Druffel ER
    Mar Pollut Bull; 2009; 59(4-7):213-8. PubMed ID: 19464702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.