These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 27661914)
1. Enhanced displacements in reflected beams at hyperbolic metamaterials. Xu C; Xu J; Song G; Zhu C; Yang Y; Agarwal GS Opt Express; 2016 Sep; 24(19):21767-76. PubMed ID: 27661914 [TBL] [Abstract][Full Text] [Related]
2. Goos-Hänchen and Imbert-Fedorov shifts of higher-order Laguerre-Gaussian beams reflected from a dielectric slab. Pichugin KN; Maksimov DN; Sadreev AF J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1324-1329. PubMed ID: 30110294 [TBL] [Abstract][Full Text] [Related]
3. Goos-Hänchen and Imbert-Fedorov shifts on hyperbolic crystals. Wang XG; Zhang YQ; Fu SF; Zhou S; Wang XZ Opt Express; 2020 Aug; 28(17):25048-25059. PubMed ID: 32907035 [TBL] [Abstract][Full Text] [Related]
4. Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide. Tang T; Li C; Luo L Sci Rep; 2016 Aug; 6():30762. PubMed ID: 27477307 [TBL] [Abstract][Full Text] [Related]
5. Large spatial shifts of reflective beam at the surface of graphene/hBN metamaterials. Song HY; Fu SF; Zhang Q; Zhou S; Wang XZ Opt Express; 2021 Jun; 29(12):19068-19083. PubMed ID: 34154149 [TBL] [Abstract][Full Text] [Related]
6. Goos-Hänchen shift of the reflected wave through an anisotropic metamaterial containing metal/dielectric nanocomposites. Huang Y; Zhao B; Gao L J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1436-44. PubMed ID: 22751412 [TBL] [Abstract][Full Text] [Related]
7. Goos-Hanchen and Imbert-Fedorov shifts for Hermite-Gauss beams. Prajapati C; Ranganathan D J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1377-82. PubMed ID: 22751403 [TBL] [Abstract][Full Text] [Related]
8. Unveiling the spin Hall effect of light in Imbert-Fedorov shift at the Brewster angle with weak measurements. Xie L; Zhou X; Qiu X; Luo L; Liu X; Li Z; He Y; Du J; Zhang Z; Wang D Opt Express; 2018 Sep; 26(18):22934-22943. PubMed ID: 30184950 [TBL] [Abstract][Full Text] [Related]
9. Goos-Hänchen and Imbert-Fedorov shifts for Airy beams. Ornigotti M Opt Lett; 2018 Mar; 43(6):1411-1414. PubMed ID: 29543248 [TBL] [Abstract][Full Text] [Related]
10. Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. Aiello A; Woerdman JP Opt Lett; 2008 Jul; 33(13):1437-9. PubMed ID: 18594657 [TBL] [Abstract][Full Text] [Related]
11. Goos-Hänchen and Imbert-Fedorov shifts for Gaussian beams impinging on graphene-coated surfaces. Grosche S; Ornigotti M; Szameit A Opt Express; 2015 Nov; 23(23):30195-203. PubMed ID: 26698500 [TBL] [Abstract][Full Text] [Related]
13. Electrically Tunable Singular Phase and Goos-Hänchen Shifts in Phase-Change-Material-Based Thin-Film Coatings as Optical Absorbers. Sreekanth KV; Das CM; Medwal R; Mishra M; Ouyang Q; Rawat RS; Yong KT; Singh R Adv Mater; 2021 Apr; 33(15):e2006926. PubMed ID: 33690921 [TBL] [Abstract][Full Text] [Related]
14. Goos-Hänchen and Imbert-Fedorov shifts at gradient metasurfaces. Kong Q; Shi HY; Shi JL; Chen X Opt Express; 2019 Apr; 27(9):11902-11913. PubMed ID: 31052739 [TBL] [Abstract][Full Text] [Related]
16. Goos-Hänchen and Imbert-Fedorov shifts of a nondiffracting Bessel beam. Aiello A; Woerdman JP Opt Lett; 2011 Feb; 36(4):543-5. PubMed ID: 21326450 [TBL] [Abstract][Full Text] [Related]
17. Highly sensitive short-range mode resonance sensor with multilayer structured hyperbolic metamaterials. Li Z; Zhang Y; Guo X; Tong C; Chen X; Zeng Y; Shen J; Li C Opt Express; 2023 Jan; 31(3):3520-3535. PubMed ID: 36785343 [TBL] [Abstract][Full Text] [Related]
18. Spatial Goos-Hänchen and Imbert-Fedorov shifts of rotational 2-D finite energy Airy beams. Gao M; Deng D Opt Express; 2020 Mar; 28(7):10531-10541. PubMed ID: 32225636 [TBL] [Abstract][Full Text] [Related]
19. Role of spatial coherence in Goos-Hänchen and Imbert-Fedorov shifts. Aiello A; Woerdman JP Opt Lett; 2011 Aug; 36(16):3151-3. PubMed ID: 21847190 [TBL] [Abstract][Full Text] [Related]
20. Coupling plasmon-waveguide resonance and multiple plasma modes in hyperbolic metamaterials for high-performance sensing. Wang H; Wang T; Yan R; Yue X; Wang L; Wang Y; Zhang J; Wang J Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35926439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]