These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27661921)

  • 1. Interferometric control of plasmonic resonator based on polarization-sensitive excitation of surface plasmon polaritons.
    Lee K; Kim J; Yun H; Lee GY; Lee B
    Opt Express; 2016 Sep; 24(19):21861-8. PubMed ID: 27661921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subwavelength polarization beam splitter with controllable splitting ratio based on surface plasmon polaritons.
    Chen Y; Song G; Xiao J; Yu L; Zhang J
    Opt Express; 2013 Jan; 21(1):314-21. PubMed ID: 23388925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-controlled tunable directional coupling of surface plasmon polaritons.
    Lin J; Mueller JP; Wang Q; Yuan G; Antoniou N; Yuan XC; Capasso F
    Science; 2013 Apr; 340(6130):331-4. PubMed ID: 23599488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling between surface plasmon polaritons and transverse electric polarized light via L-shaped nano-apertures.
    Yang J; Hu C; Wen Q; Zhao C; Zhang J
    Opt Lett; 2015 Mar; 40(6):978-81. PubMed ID: 25768161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization-controlled unidirectional excitation of surface plasmon polaritons utilizing catenary apertures.
    Jin J; Li X; Guo Y; Pu M; Gao P; Ma X; Luo X
    Nanoscale; 2019 Feb; 11(9):3952-3957. PubMed ID: 30762856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures.
    Thompson PG; Biris CG; Osley EJ; Gaathon O; Osgood RM; Panoiu NC; Warburton PA
    Opt Express; 2011 Dec; 19(25):25035-47. PubMed ID: 22273895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable plasmonic resonator using conductivity modulated Bragg reflectors.
    Pathiranage S; Gunapala SD; Premaratne M
    J Phys Condens Matter; 2021 May; 33(24):. PubMed ID: 33631723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subwavelength plasmonic nanoantenna as a Plasmonic Induced Polarization Rotator (PI-PR).
    Hayat Q; Geng J; Liang X; Jin R; Hayat K; He C
    Sci Rep; 2020 Feb; 10(1):2809. PubMed ID: 32071332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable multiple plasmonic bending beams via polarization of incident waves.
    Li H; Qu Y; Ullah H; Zhang B; Zhang Z
    Opt Express; 2017 Nov; 25(24):29659-29666. PubMed ID: 29221003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Long-Range Surface Plasmon Excitation, Dynamic Range and Figure of Merit Using a Dielectric Resonant Cavity.
    Suvarnaphaet P; Pechprasarn S
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30131469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons.
    Balci S; Kocabas C
    Opt Lett; 2015 Jul; 40(14):3424-7. PubMed ID: 26176485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-band perfect plasmonic absorptions using rectangular graphene gratings.
    Xia SX; Zhai X; Huang Y; Liu JQ; Wang LL; Wen SC
    Opt Lett; 2017 Aug; 42(15):3052-3055. PubMed ID: 28957243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear optics of surface plasmon polaritons in subwavelength graphene ribbon resonators.
    Nasari H; Abrishamian MS; Berini P
    Opt Express; 2016 Jan; 24(1):708-23. PubMed ID: 26832300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focusing surface plasmon polaritons and detecting Stokes parameters utilizing nanoslits distributed plasmonic lenses.
    Huang F; Jiang X; Yuan H; Yang H; Li S; Sun X
    Opt Lett; 2016 Apr; 41(7):1684-7. PubMed ID: 27192318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation.
    Moon SW; Jeong HD; Lee S; Lee B; Ryu YS; Lee SY
    Opt Express; 2019 Jul; 27(14):19119-19129. PubMed ID: 31503675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic nano-tweezer based on square nanoplate tetramers.
    Jin Q; Wang L; Yan S; Wei H; Huang Y
    Appl Opt; 2018 Jul; 57(19):5328-5332. PubMed ID: 30117824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of enhanced transmission for s-polarized light through a subwavelength slit.
    Guillaumée M; Nikitin AY; Klein MJ; Dunbar LA; Spassov V; Eckert R; Martín-Moreno L; García-Vidal FJ; Stanley RP
    Opt Express; 2010 Apr; 18(9):9722-7. PubMed ID: 20588821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters.
    Bracher G; Schraml K; Ossiander M; Frédérick S; Finley JJ; Kaniber M
    Nanotechnology; 2014 Feb; 25(7):075203. PubMed ID: 24452056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically stitched arbitrary fan-sectors with selective polarization states for dynamic manipulation of surface plasmon polaritons.
    Guo LJ; Min CJ; Yuan GH; Zhang CL; Wang JG; Shen Z; Yuan XC
    Opt Express; 2012 Oct; 20(22):24748-53. PubMed ID: 23187239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization controlled coupling and shaping of surface plasmon polaritons by nanoantenna arrays.
    Avayu O; Epstein I; Eizner E; Ellenbogen T
    Opt Lett; 2015 Apr; 40(7):1520-3. PubMed ID: 25831374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.