These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 27661942)

  • 1. Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star.
    Koukourakis N; Fregin B; König J; Büttner L; Czarske JW
    Opt Express; 2016 Sep; 24(19):22074-87. PubMed ID: 27661942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.
    Persoons T; O'Donovan TS
    Sensors (Basel); 2011; 11(1):1-18. PubMed ID: 22346564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based wavefront shaping microscopy.
    Thendiyammal A; Osnabrugge G; Knop T; Vellekoop IM
    Opt Lett; 2020 Sep; 45(18):5101-5104. PubMed ID: 32932463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoscopic particle image velocimetry in inhomogeneous refractive index fields of combustion flows.
    Vanselow C; Hoppe O; Stöbener D; Fischer A
    Appl Opt; 2021 Oct; 60(28):8716-8727. PubMed ID: 34613097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distortion correction for particle image velocimetry using multiple-input deep convolutional neural network and Hartmann-Shack sensing.
    Gao Z; Radner H; Büttner L; Ye H; Li X; Czarske J
    Opt Express; 2021 Jun; 29(12):18669-18687. PubMed ID: 34154119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smartphone-based particle image velocimetry for cardiovascular flows applications: A focus on coronary arteries.
    Caridi GCA; Torta E; Mazzi V; Chiastra C; Audenino AL; Morbiducci U; Gallo D
    Front Bioeng Biotechnol; 2022; 10():1011806. PubMed ID: 36568311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferometric velocity measurements through a fluctuating phase boundary using two Fresnel guide stars.
    Radner H; Büttner L; Czarske J
    Opt Lett; 2015 Aug; 40(16):3766-9. PubMed ID: 26274655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regularized tomographic PIV for incompressible flows based on conservation of mass.
    Liu N; Ma L
    Appl Opt; 2020 Feb; 59(6):1667-1677. PubMed ID: 32225672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.
    Lee SJ; Park HW; Jung SY
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):1160-6. PubMed ID: 25178007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of tomographic PIV uncertainty using controlled experimental measurements.
    Liu N; Wu Y; Ma L
    Appl Opt; 2018 Jan; 57(3):420-427. PubMed ID: 29400791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars.
    Tao X; Dean Z; Chien C; Azucena O; Bodington D; Kubby J
    Opt Express; 2013 Dec; 21(25):31282-92. PubMed ID: 24514702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping.
    Ruan H; Haber T; Liu Y; Brake J; Kim J; Berlin JM; Yang C
    Optica; 2017 Nov; 4(11):1337-1343. PubMed ID: 29623290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro validation of flow measurement with phase contrast MRI at 3 tesla using stereoscopic particle image velocimetry and stereoscopic particle image velocimetry-based computational fluid dynamics.
    Khodarahmi I; Shakeri M; Kotys-Traughber M; Fischer S; Sharp MK; Amini AA
    J Magn Reson Imaging; 2014 Jun; 39(6):1477-85. PubMed ID: 24123721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrast-enhancement techniques for particle-image velocimetry.
    Dellenback PA; Macharivilakathu J; Pierce SR
    Appl Opt; 2000 Nov; 39(32):5978-90. PubMed ID: 18354603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.
    Hsu PS; Roy S; Jiang N; Gord JR
    Opt Express; 2013 Feb; 21(3):3617-26. PubMed ID: 23481818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vector Flow Imaging of a Highly Laden Suspension in a Zinc-Air Flow Battery Model.
    Kupsch C; Weik D; Feierabend L; Nauber R; Buttner L; Czarske J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Apr; 66(4):761-771. PubMed ID: 30629499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent particle image velocimetry: application to flow measurement in refractive index-matched porous media.
    Northrup MA; Kulp TJ; Angel SM
    Appl Opt; 1991 Jul; 30(21):3034-40. PubMed ID: 20706352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics.
    van Ooij P; Guédon A; Poelma C; Schneiders J; Rutten MC; Marquering HA; Majoie CB; VanBavel E; Nederveen AJ
    NMR Biomed; 2012 Jan; 25(1):14-26. PubMed ID: 21480417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallax correction for precise near-wall flow investigations using particle imaging.
    Cierpka C; Scharnowski S; Kähler CJ
    Appl Opt; 2013 Apr; 52(12):2923-31. PubMed ID: 23669705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.