BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1217 related articles for article (PubMed ID: 27662091)

  • 21. Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein.
    Lei Y; Zhang X; Su J; Jeong M; Gundry MC; Huang YH; Zhou Y; Li W; Goodell MA
    Nat Commun; 2017 Jul; 8():16026. PubMed ID: 28695892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity.
    Siddique AN; Nunna S; Rajavelu A; Zhang Y; Jurkowska RZ; Reinhardt R; Rots MG; Ragozin S; Jurkowski TP; Jeltsch A
    J Mol Biol; 2013 Feb; 425(3):479-91. PubMed ID: 23220192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic Targeting of TET Activity for Targeted Demethylation Using CRISPR/Cas9.
    Nguyen TV; Lister R
    Methods Mol Biol; 2021; 2272():181-194. PubMed ID: 34009614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic changes in DNA methylation during thermal control establishment affect CREB binding to the brain-derived neurotrophic factor promoter.
    Yossifoff M; Kisliouk T; Meiri N
    Eur J Neurosci; 2008 Dec; 28(11):2267-77. PubMed ID: 19046370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases.
    Xiong T; Meister GE; Workman RE; Kato NC; Spellberg MJ; Turker F; Timp W; Ostermeier M; Novina CD
    Sci Rep; 2017 Jul; 7(1):6732. PubMed ID: 28751638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter.
    Choudhury SR; Cui Y; Lubecka K; Stefanska B; Irudayaraj J
    Oncotarget; 2016 Jul; 7(29):46545-46556. PubMed ID: 27356740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins.
    Maeder ML; Angstman JF; Richardson ME; Linder SJ; Cascio VM; Tsai SQ; Ho QH; Sander JD; Reyon D; Bernstein BE; Costello JF; Wilkinson MF; Joung JK
    Nat Biotechnol; 2013 Dec; 31(12):1137-42. PubMed ID: 24108092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions.
    Morita S; Noguchi H; Horii T; Nakabayashi K; Kimura M; Okamura K; Sakai A; Nakashima H; Hata K; Nakashima K; Hatada I
    Nat Biotechnol; 2016 Oct; 34(10):1060-1065. PubMed ID: 27571369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial escape from XCI by DNA methylation editing of the CDKL5 gene.
    Halmai JANM; Deng P; Gonzalez CE; Coggins NB; Cameron D; Carter JL; Buchanan FKB; Waldo JJ; Lock SR; Anderson JD; O'Geen H; Segal DJ; Nolta J; Fink KD
    Nucleic Acids Res; 2020 Mar; 48(5):2372-2387. PubMed ID: 31925439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epigenetic modifications affect Dnmt3L expression.
    Aapola U; Mäenpää K; Kaipia A; Peterson P
    Biochem J; 2004 Jun; 380(Pt 3):705-13. PubMed ID: 15015937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein engineering strategies for improving the selective methylation of target CpG sites by a dCas9-directed cytosine methyltransferase in bacteria.
    Xiong T; Rohm D; Workman RE; Roundtree L; Novina CD; Timp W; Ostermeier M
    PLoS One; 2018; 13(12):e0209408. PubMed ID: 30562388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tet1-mediated DNA demethylation regulates neuronal cell death induced by oxidative stress.
    Xin YJ; Yuan B; Yu B; Wang YQ; Wu JJ; Zhou WH; Qiu Z
    Sci Rep; 2015 Jan; 5():7645. PubMed ID: 25561289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The de novo methyltransferases DNMT3a and DNMT3b target the murine gammaherpesvirus immediate-early gene 50 promoter during establishment of latency.
    Gray KS; Forrest JC; Speck SH
    J Virol; 2010 May; 84(10):4946-59. PubMed ID: 20200245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzyme-free targeted DNA demethylation using CRISPR-dCas9-based steric hindrance to identify DNA methylation marks causal to altered gene expression.
    Sapozhnikov DM; Szyf M
    Nat Protoc; 2022 Dec; 17(12):2840-2881. PubMed ID: 36207463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted DNA demethylation of the
    Gallego-Bartolomé J; Gardiner J; Liu W; Papikian A; Ghoshal B; Kuo HY; Zhao JM; Segal DJ; Jacobsen SE
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2125-E2134. PubMed ID: 29444862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A.
    Huang YH; Su J; Lei Y; Brunetti L; Gundry MC; Zhang X; Jeong M; Li W; Goodell MA
    Genome Biol; 2017 Sep; 18(1):176. PubMed ID: 28923089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of CpG methylation by Dnmt and Tet in pluripotent stem cells.
    Horii T; Hatada I
    J Reprod Dev; 2016 Aug; 62(4):331-5. PubMed ID: 27151232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system.
    Kang JG; Park JS; Ko JH; Kim YS
    Sci Rep; 2019 Aug; 9(1):11960. PubMed ID: 31427598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of Gene Expression Patterns of Epigenetic Enzymes
    Vágó J; Kiss K; Karanyicz E; Takács R; Matta C; Ducza L; Rauch TA; Zákány R
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression.
    O'Geen H; Ren C; Nicolet CM; Perez AA; Halmai J; Le VM; Mackay JP; Farnham PJ; Segal DJ
    Nucleic Acids Res; 2017 Sep; 45(17):9901-9916. PubMed ID: 28973434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 61.