These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27662402)

  • 1. Accelerating flow propagator measurements for the investigation of reactive transport in porous media.
    Colbourne AA; Sederman AJ; Mantle MD; Gladden LF
    J Magn Reson; 2016 Nov; 272():68-72. PubMed ID: 27662402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR-propagator measurements in porous media in the presence of surface relaxation and internal fields.
    Scheven UM; Seland JG; Cory DG
    Magn Reson Imaging; 2005 Feb; 23(2):363-5. PubMed ID: 15833648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquisition of spatially-resolved displacement propagators using compressed sensing APGSTE-RARE MRI.
    de Kort DW; Reci A; Ramskill NP; Appel M; de Jong H; Mantle MD; Sederman AJ; Gladden LF
    J Magn Reson; 2018 Oct; 295():45-56. PubMed ID: 30096552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acceleration of multi-dimensional propagator measurements with compressed sensing.
    Paulsen JL; Cho H; Cho G; Song YQ
    J Magn Reson; 2011 Dec; 213(1):166-70. PubMed ID: 21924932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterising the rheology of non-Newtonian fluids using PFG-NMR and cumulant analysis.
    Blythe TW; Sederman AJ; Mitchell J; Stitt EH; York AP; Gladden LF
    J Magn Reson; 2015 Jun; 255():122-31. PubMed ID: 25965147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A PGSE study of propane gas flow through model porous bead packs.
    Codd SL; Altobelli SA
    J Magn Reson; 2003 Jul; 163(1):16-22. PubMed ID: 12852903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid measurement of flow propagators in porous rocks.
    Mitchell J; Sederman AJ; Fordham EJ; Johns ML; Gladden LF
    J Magn Reson; 2008 Apr; 191(2):267-72. PubMed ID: 18226938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast imaging of laboratory core floods using 3D compressed sensing RARE MRI.
    Ramskill NP; Bush I; Sederman AJ; Mantle MD; Benning M; Anger BC; Appel M; Gladden LF
    J Magn Reson; 2016 Sep; 270():187-197. PubMed ID: 27500742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Chemically-Selective Monitoring of Multiphase Displacement Processes in a Carbonate Rock Using 3D Magnetic Resonance Imaging.
    Ramskill NP; Sederman AJ; Mantle MD; Appel M; de Jong H; Gladden LF
    Transp Porous Media; 2018; 121(1):15-35. PubMed ID: 31983793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling and upscaling of transport in carbonates during dissolution: Validation and calibration with NMR experiments.
    Muljadi BP; Bijeljic B; Blunt MJ; Colbourne A; Sederman AJ; Mantle MD; Gladden LF
    J Contam Hydrol; 2018 May; 212():85-95. PubMed ID: 28967455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for modeling transport of particles in realistic porous networks: application to the computation of NMR flow propagators.
    Picard G; Frey K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066311. PubMed ID: 17677361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissolution-After-Precipitation (DAP): a simple microfluidic approach for studying carbonate rock dissolution and multiphase reactive transport mechanisms.
    Xu J; Balhoff MT
    Lab Chip; 2022 Oct; 22(21):4205-4223. PubMed ID: 36172900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing dispersivity and stagnation in porous media using NMR flow propagators.
    Singer PM; Mitchell J; Fordham EJ
    J Magn Reson; 2016 Sep; 270():98-107. PubMed ID: 27434778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing pore-scale structure-flow correlations in sedimentary rocks using magnetic resonance imaging.
    Karlsons K; de Kort DW; Sederman AJ; Mantle MD; Freeman JJ; Appel M; Gladden LF
    Phys Rev E; 2021 Feb; 103(2-1):023104. PubMed ID: 33736007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of three-dimensional porous media using a single thin section.
    Tahmasebi P; Sahimi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066709. PubMed ID: 23005245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining NMR flow propagator moments in porous rocks without the influence of relaxation.
    Mitchell J; Graf von der Schulenburg DA; Holland DJ; Fordham EJ; Johns ML; Gladden LF
    J Magn Reson; 2008 Aug; 193(2):218-25. PubMed ID: 18514556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR relaxation and pulsed field gradient study of alginate bead porous media.
    Britton MM; Graham RG; Packer KJ
    J Magn Reson; 2004 Aug; 169(2):203-14. PubMed ID: 15261615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring bacterially induced calcite precipitation in porous media using magnetic resonance imaging and flow measurements.
    Sham E; Mantle MD; Mitchell J; Tobler DJ; Phoenix VR; Johns ML
    J Contam Hydrol; 2013 Sep; 152():35-43. PubMed ID: 23872026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High pressure-elevated temperature x-ray micro-computed tomography for subsurface applications.
    Iglauer S; Lebedev M
    Adv Colloid Interface Sci; 2018 Jun; 256():393-410. PubMed ID: 29526246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing.
    Holland DJ; Malioutov DM; Blake A; Sederman AJ; Gladden LF
    J Magn Reson; 2010 Apr; 203(2):236-46. PubMed ID: 20138789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.