These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27662412)

  • 1. Photocatalytic Oxidation of Lignin Model Systems by Merging Visible-Light Photoredox and Palladium Catalysis.
    Kärkäs MD; Bosque I; Matsuura BS; Stephenson CR
    Org Lett; 2016 Oct; 18(19):5166-5169. PubMed ID: 27662412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room temperature C-P bond formation enabled by merging nickel catalysis and visible-light-induced photoredox catalysis.
    Xuan J; Zeng TT; Chen JR; Lu LQ; Xiao WJ
    Chemistry; 2015 Mar; 21(13):4962-5. PubMed ID: 25688851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of lignin by selective oxidation: An emerging strategy for boosting lignin depolymerization to aromatics.
    Yu X; Wei Z; Lu Z; Pei H; Wang H
    Bioresour Technol; 2019 Nov; 291():121885. PubMed ID: 31377049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of Lignin Models by Photoredox Catalysis.
    Zhang J
    ChemSusChem; 2018 Sep; 11(18):3071-3080. PubMed ID: 29989337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatic Chlorosulfonylation by Photoredox Catalysis.
    Májek M; Neumeier M; Jacobi von Wangelin A
    ChemSusChem; 2017 Jan; 10(1):151-155. PubMed ID: 27863070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A photochemical strategy for lignin degradation at room temperature.
    Nguyen JD; Matsuura BS; Stephenson CR
    J Am Chem Soc; 2014 Jan; 136(4):1218-21. PubMed ID: 24367945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis.
    Hopkinson MN; Sahoo B; Li JL; Glorius F
    Chemistry; 2014 Apr; 20(14):3874-86. PubMed ID: 24596102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organocatalytic Chemoselective Primary Alcohol Oxidation and Subsequent Cleavage of Lignin Model Compounds and Lignin.
    Dabral S; Hernández JG; Kamer PCJ; Bolm C
    ChemSusChem; 2017 Jul; 10(13):2707-2713. PubMed ID: 28523820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions.
    Vangeel T; Schutyser W; Renders T; Sels BF
    Top Curr Chem (Cham); 2018 Jul; 376(4):30. PubMed ID: 29974271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and high-efficiency synthesis of 2-substituted benzothiazoles via combining enzyme catalysis and photoredox catalysis in one-pot.
    Yang ZJ; Gong QT; Yu Y; Lu WF; Wu ZN; Wang N; Yu XQ
    Bioorg Chem; 2021 Feb; 107():104607. PubMed ID: 33450543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible-Light-Promoted C-H Arylation by Merging Palladium Catalysis with Organic Photoredox Catalysis.
    Jiang J; Zhang WM; Dai JJ; Xu J; Xu HJ
    J Org Chem; 2017 Apr; 82(7):3622-3630. PubMed ID: 28303717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valorization of Lignin by Partial Wet Oxidation Using Sustainable Heteropoly Acid Catalysts.
    Demesa AG; Laari A; Sillanpää M; Koiranen T
    Molecules; 2017 Sep; 22(10):. PubMed ID: 28956838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-light photoredox-catalyzed C-O bond cleavage of diaryl ethers by acridinium photocatalysts at room temperature.
    Tan FF; He XY; Tian WF; Li Y
    Nat Commun; 2020 Nov; 11(1):6126. PubMed ID: 33257656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Development of Visible-Light Photoredox Catalysis in Flow.
    Garlets ZJ; Nguyen JD; Stephenson CR
    Isr J Chem; 2014 Apr; 54(4):351-360. PubMed ID: 25484447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Merging Visible-Light Photocatalysis and Palladium Catalysis for C-H Acylation of Azo- and Azoxybenzenes with α-Keto Acids.
    Xu N; Li P; Xie Z; Wang L
    Chemistry; 2016 Feb; 22(7):2236-42. PubMed ID: 26650396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-Temperature Decarboxylative Couplings of α-Oxocarboxylates with Aryl Halides by Merging Photoredox with Palladium Catalysis.
    Cheng WM; Shang R; Yu HZ; Fu Y
    Chemistry; 2015 Sep; 21(38):13191-5. PubMed ID: 26230749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar photochemical oxidation of alcohols using catalytic hydroquinone and copper nanoparticles under oxygen: oxidative cleavage of lignin models.
    Mitchell LJ; Moody CJ
    J Org Chem; 2014 Nov; 79(22):11091-100. PubMed ID: 25322456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-neutral α-allylation of amines by combining palladium catalysis and visible-light photoredox catalysis.
    Xuan J; Zeng TT; Feng ZJ; Deng QH; Chen JR; Lu LQ; Xiao WJ; Alper H
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1625-8. PubMed ID: 25504920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.
    Ma R; Xu Y; Zhang X
    ChemSusChem; 2015 Jan; 8(1):24-51. PubMed ID: 25272962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Downstream Processing Strategies for Lignin-First Biorefinery.
    Sun Z; Cheng J; Wang D; Yuan TQ; Song G; Barta K
    ChemSusChem; 2020 Oct; 13(19):5199-5212. PubMed ID: 32748524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.