BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27662511)

  • 1. Molecular Dynamics Study of a Dual-Cation Ionomer Electrolyte.
    Chen X; Chen F; Jónsson E; Forsyth M
    Chemphyschem; 2017 Jan; 18(2):230-237. PubMed ID: 27662511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid state nuclear magnetic resonance investigation of polymer backbone dynamics in poly(ethylene oxide) based lithium and sodium polyether-ester-sulfonate ionomers.
    Roach DJ; Dou S; Colby RH; Mueller KT
    J Chem Phys; 2013 May; 138(19):194907. PubMed ID: 23697441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics study of the effect of tetraglyme plasticizer on dual-cation ionomer electrolytes.
    Chen X; Chen F; Forsyth M
    Phys Chem Chem Phys; 2017 Jun; 19(25):16426-16432. PubMed ID: 28608908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries.
    Forsyth M; Porcarelli L; Wang X; Goujon N; Mecerreyes D
    Acc Chem Res; 2019 Mar; 52(3):686-694. PubMed ID: 30801170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers.
    Roach DJ; Dou S; Colby RH; Mueller KT
    J Chem Phys; 2012 Jan; 136(1):014510. PubMed ID: 22239792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unexpected effect of tetraglyme plasticizer on lithium ion dynamics in PAMPS based ionomers.
    Oza YV; MacFarlane DR; Forsyth M; O'Dell LA
    Phys Chem Chem Phys; 2016 Jul; 18(28):19011-9. PubMed ID: 27355988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries.
    Mabuchi T; Nakajima K; Tokumasu T
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophase-Separated Organic Ionic Plastic Crystals/PAMPS-Based Ionomer Electrolyte: A New Design Perspective for Flexible and Highly Conductive Solid-State Electrolytes.
    Goujon N; Kerr R; Gervillié C; Oza YV; O'Dell LA; Howlett PC; Forsyth M
    ACS Omega; 2020 Feb; 5(6):2931-2938. PubMed ID: 32095715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries.
    Khurana R; Schaefer JL; Archer LA; Coates GW
    J Am Chem Soc; 2014 May; 136(20):7395-402. PubMed ID: 24754503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of Ion Dynamics on the Polymer Chain Length in Poly(ethylene oxide)-Based Polymer Electrolytes.
    Chattoraj J; Knappe M; Heuer A
    J Phys Chem B; 2015 Jun; 119(22):6786-91. PubMed ID: 25965904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glass Transition Temperature and Ion Binding Determine Conductivity and Lithium-Ion Transport in Polymer Electrolytes.
    Schauser NS; Nikolaev A; Richardson PM; Xie S; Johnson K; Susca EM; Wang H; Seshadri R; Clément RJ; Read de Alaniz J; Segalman RA
    ACS Macro Lett; 2021 Jan; 10(1):104-109. PubMed ID: 35548991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes.
    Song J; Lee H; Choo MJ; Park JK; Kim HT
    Sci Rep; 2015 Sep; 5():14458. PubMed ID: 26411701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes.
    Kondou S; Thomas ML; Mandai T; Ueno K; Dokko K; Watanabe M
    Phys Chem Chem Phys; 2019 Feb; 21(9):5097-5105. PubMed ID: 30762863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge carrier dynamics and relaxation in (polyethylene oxide-lithium-salt)-based polymer electrolyte containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide as ionic liquid.
    Karmakar A; Ghosh A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051802. PubMed ID: 22181434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion.
    Ma Q; Zhang H; Zhou C; Zheng L; Cheng P; Nie J; Feng W; Hu YS; Li H; Huang X; Chen L; Armand M; Zhou Z
    Angew Chem Int Ed Engl; 2016 Feb; 55(7):2521-5. PubMed ID: 26840215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids.
    Borodin O; Smith GD; Henderson W
    J Phys Chem B; 2006 Aug; 110(34):16879-86. PubMed ID: 16927976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Structure and Dynamics of Ionic Liquids in a Rigid-Rod Polyanion-Based Ion Gel.
    Yu Z; He Y; Wang Y; Madsen LA; Qiao R
    Langmuir; 2017 Jan; 33(1):322-331. PubMed ID: 27997204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend.
    Costa LT; Sun B; Jeschull F; Brandell D
    J Chem Phys; 2015 Jul; 143(2):024904. PubMed ID: 26178124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature.
    Hu P; Duan Y; Hu D; Qin B; Zhang J; Wang Q; Liu Z; Cui G; Chen L
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4720-7. PubMed ID: 25654192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.