BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27662583)

  • 1. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.
    Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z
    Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes.
    Li F; Wang J; Lai Y; Wu C; Sun S; He Y; Ma H
    Biosens Bioelectron; 2013 Jan; 39(1):82-7. PubMed ID: 22840330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric sensing of copper(II) based on catalytic etching of gold nanoparticles.
    Liu R; Chen Z; Wang S; Qu C; Chen L; Wang Z
    Talanta; 2013 Aug; 112():37-42. PubMed ID: 23708534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERS quantitative detection of trace human chorionic gonadotropin using a label-free Victoria blue B as probe in the aggregated immunonanogold sol substrate.
    Ma L; Wen G; Ye L; Lu Z; Luo Y; Liang A; Jiang Z
    Luminescence; 2015 Sep; 30(6):790-7. PubMed ID: 25428635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of mercury ions (II) based on non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles by resonance Rayleigh scattering method.
    Gao ZF; Song WW; Luo HQ; Li NB
    Biosens Bioelectron; 2015 Mar; 65():360-5. PubMed ID: 25461182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhancement Raman scattering sensing strategy for discriminating trace mercuric ion (II) from real water samples in sensitive, specific, recyclable, and reproducible manners.
    Sun B; Jiang X; Wang H; Song B; Zhu Y; Wang H; Su Y; He Y
    Anal Chem; 2015 Jan; 87(2):1250-6. PubMed ID: 25526293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection.
    Al-Ogaidi I; Gou H; Al-Kazaz AK; Aguilar ZP; Melconian AK; Zheng P; Wu N
    Anal Chim Acta; 2014 Feb; 811():76-80. PubMed ID: 24456597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen.
    Panikkanvalappil SR; El-Sayed MA
    J Phys Chem B; 2014 Dec; 118(49):14085-91. PubMed ID: 25144402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cytosine-rich DNA decorated gold nanoparticles surface enhanced Raman-scattering platform for sensitive and selective detection of silver ions.
    Qiao HY; Hong ML; Tian X; Huang LJ; Chu X
    Anal Sci; 2013; 29(10):991-6. PubMed ID: 24107565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple "clickable" biosensor for colorimetric detection of copper(II) ions based on unmodified gold nanoparticles.
    Shen Q; Li W; Tang S; Hu Y; Nie Z; Huang Y; Yao S
    Biosens Bioelectron; 2013 Mar; 41():663-8. PubMed ID: 23089325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of MBA-Encoded Silver/Silica Core-Shell Nanoparticles as Novel SERS Tags for Biosensing Gibberellin A
    Wei Q; Lin J; Liu F; Wen C; Li N; Huang G; Luo Z
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31775290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive SERS detection of mercury based on the assembled gold nanochains.
    Xu L; Yin H; Ma W; Kuang H; Wang L; Xu C
    Biosens Bioelectron; 2015 May; 67():472-6. PubMed ID: 25241150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles.
    Ye Y; Liu H; Yang L; Liu J
    Nanoscale; 2012 Oct; 4(20):6442-8. PubMed ID: 22955571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent gold clusters as nanosensors for copper ions in live cells.
    Durgadas CV; Sharma CP; Sreenivasan K
    Analyst; 2011 Mar; 136(5):933-40. PubMed ID: 21152627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Zhang K; Hu Y; Li G
    Talanta; 2013 Nov; 116():712-8. PubMed ID: 24148465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.
    Lin JH; Tseng WL
    Talanta; 2015 Jan; 132():44-51. PubMed ID: 25476277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.