These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27662759)

  • 1. Estimating complicated baselines in analytical signals using the iterative training of Bayesian regularized artificial neural networks.
    Mani-Varnosfaderani A; Kanginejad A; Gilany K; Valadkhani A
    Anal Chim Acta; 2016 Oct; 940():56-64. PubMed ID: 27662759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Baseline correction using adaptive iteratively reweighted penalized least squares.
    Zhang ZM; Chen S; Liang YZ
    Analyst; 2010 May; 135(5):1138-46. PubMed ID: 20419267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Iterative Curve-Fitting Baseline Correction Method for Raman Spectra Driven by Neural Network.
    Dong S; Liu Y; Yu H; Wang Y; Wu J
    Appl Spectrosc; 2024 Jan; 78(1):111-119. PubMed ID: 38055993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fully automated iterative moving averaging (AIMA) technique for baseline correction.
    Prakash BD; Wei YC
    Analyst; 2011 Aug; 136(15):3130-5. PubMed ID: 21687870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological weighted penalized least squares for background correction.
    Li Z; Zhan DJ; Wang JJ; Huang J; Xu QS; Zhang ZM; Zheng YB; Liang YZ; Wang H
    Analyst; 2013 Aug; 138(16):4483-92. PubMed ID: 23778299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baseline Correction Based on a Search Algorithm from Artificial Intelligence.
    Wang X; Chen X
    Appl Spectrosc; 2021 May; 75(5):531-544. PubMed ID: 33215516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Baseline correction method based on improved adaptive iteratively reweighted penalized least squares for the x-ray fluorescence spectrum.
    Jiang X; Li F; Wang Q; Luo J; Hao J; Xu M
    Appl Opt; 2021 Jul; 60(19):5707-5715. PubMed ID: 34263865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Baseline correction method based on improved asymmetrically reweighted penalized least squares for the Raman spectrum.
    Ye J; Tian Z; Wei H; Li Y
    Appl Opt; 2020 Dec; 59(34):10933-10943. PubMed ID: 33361915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regularized variational Bayesian learning of echo state networks with delay&sum readout.
    Shutin D; Zechner C; Kulkarni SR; Poor HV
    Neural Comput; 2012 Apr; 24(4):967-95. PubMed ID: 22168555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. logD7.4 modeling using Bayesian Regularized Neural Networks. Assessment and correction of the errors of prediction.
    Bruneau P; McElroy NR
    J Chem Inf Model; 2006; 46(3):1379-87. PubMed ID: 16711757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Adaptive and Fully Automated Baseline Correction Method for Raman Spectroscopy Based on Morphological Operations and Mollification.
    Chen H; Xu W; Broderick NGR
    Appl Spectrosc; 2019 Mar; 73(3):284-293. PubMed ID: 30334459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Error-correction learning for artificial neural networks using the Bayesian paradigm. Application to automated medical diagnosis.
    Belciug S; Gorunescu F
    J Biomed Inform; 2014 Dec; 52():329-37. PubMed ID: 25058735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Baseline correction method based on doubly reweighted penalized least squares.
    Xu D; Liu S; Cai Y; Yang C
    Appl Opt; 2019 May; 58(14):3913-3920. PubMed ID: 31158209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-driven and coarse-to-fine baseline correction for signals of analytical instruments.
    Xu X; Huo X; Qian X; Lu X; Yu Q; Ni K; Wang X
    Anal Chim Acta; 2021 May; 1157():338386. PubMed ID: 33832586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural networks from MATLAB in medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN): application to the prediction of the antagonistic activity against human platelet thrombin receptor (PAR-1).
    Caballero J; Fernández M
    Curr Top Med Chem; 2008; 8(18):1580-605. PubMed ID: 19075769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines.
    Fernández M; Caballero J
    Chem Biol Drug Des; 2006 Oct; 68(4):201-12. PubMed ID: 17105484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Baseline correction for Raman spectra using a spectral estimation-based asymmetrically reweighted penalized least squares method.
    Guo Y; Jin W; Wang W; He Y; Qiu S
    Appl Opt; 2023 Jun; 62(18):4766-4776. PubMed ID: 37707250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting.
    Hippert HS; Taylor JW
    Neural Netw; 2010 Apr; 23(3):386-95. PubMed ID: 20022462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bayesian recurrent neural network for unsupervised pattern recognition in large incomplete data sets.
    Orre R; Bate A; Norén GN; Swahn E; Arnborg S; Edwards IR
    Int J Neural Syst; 2005 Jun; 15(3):207-22. PubMed ID: 16013091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative least squares functional networks classifier.
    El-Sebakhy EA; Hadi AS; Faisal KA
    IEEE Trans Neural Netw; 2007 May; 18(3):844-50. PubMed ID: 17526349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.