These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 27663095)
1. Study of tonotopic brain changes with functional MRI and FDG-PET in a patient with unilateral objective cochlear tinnitus. Guinchard AC; Ghazaleh N; Saenz M; Fornari E; Prior JO; Maeder P; Adib S; Maire R Hear Res; 2016 Nov; 341():232-239. PubMed ID: 27663095 [TBL] [Abstract][Full Text] [Related]
2. Asymmetry in primary auditory cortex activity in tinnitus patients and controls. Geven LI; de Kleine E; Willemsen AT; van Dijk P Neuroscience; 2014 Jan; 256():117-25. PubMed ID: 24161276 [TBL] [Abstract][Full Text] [Related]
3. Neural activity underlying tinnitus generation: results from PET and fMRI. Lanting CP; de Kleine E; van Dijk P Hear Res; 2009 Sep; 255(1-2):1-13. PubMed ID: 19545617 [TBL] [Abstract][Full Text] [Related]
4. Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus. Wienbruch C; Paul I; Weisz N; Elbert T; Roberts LE Neuroimage; 2006 Oct; 33(1):180-94. PubMed ID: 16901722 [TBL] [Abstract][Full Text] [Related]
5. Salicylate-induced cochlear impairments, cortical hyperactivity and re-tuning, and tinnitus. Chen GD; Stolzberg D; Lobarinas E; Sun W; Ding D; Salvi R Hear Res; 2013 Jan; 295():100-13. PubMed ID: 23201030 [TBL] [Abstract][Full Text] [Related]
6. Cortical Tonotopic Map Changes in Humans Are Larger in Hearing Loss Than in Additional Tinnitus. Koops EA; Renken RJ; Lanting CP; van Dijk P J Neurosci; 2020 Apr; 40(16):3178-3185. PubMed ID: 32193229 [TBL] [Abstract][Full Text] [Related]
7. Quantitative analysis of cochlear active mechanisms in tinnitus subjects with normal hearing sensitivity: multiparametric recording of evoked otoacoustic emissions and contralateral suppression. Paglialonga A; Del Bo L; Ravazzani P; Tognola G Auris Nasus Larynx; 2010 Jun; 37(3):291-8. PubMed ID: 19879078 [TBL] [Abstract][Full Text] [Related]
8. High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus. Ghazaleh N; Zwaag WV; Clarke S; Ville DV; Maire R; Saenz M Brain Topogr; 2017 Sep; 30(5):685-697. PubMed ID: 28168599 [TBL] [Abstract][Full Text] [Related]
9. The impact of auditory cortex activity on characterizing and treating patients with chronic tinnitus--first results from a PET study. Langguth B; Eichhammer P; Kreutzer A; Maenner P; Marienhagen J; Kleinjung T; Sand P; Hajak G Acta Otolaryngol Suppl; 2006 Dec; (556):84-8. PubMed ID: 17114149 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of carnitine in treatment of tinnitus: evidence from audiological and MRI measures-a case study. Gopal KV; Thomas BP; Mao D; Lu H J Am Acad Audiol; 2015 Mar; 26(3):311-24. PubMed ID: 25751698 [TBL] [Abstract][Full Text] [Related]
11. Ultra-high-frequency acoustic stimulation and tinnitus control: a positron emission tomography study. Shulman A; Strashun AM; Avitable MJ; Lenhardt ML; Goldstein BA Int Tinnitus J; 2004; 10(2):113-25. PubMed ID: 15732508 [TBL] [Abstract][Full Text] [Related]
12. Functional imaging of unilateral tinnitus using fMRI. Lanting CP; De Kleine E; Bartels H; Van Dijk P Acta Otolaryngol; 2008 Apr; 128(4):415-21. PubMed ID: 18368576 [TBL] [Abstract][Full Text] [Related]
13. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss. Boyen K; de Kleine E; van Dijk P; Langers DR Hear Res; 2014 Jun; 312():48-59. PubMed ID: 24631963 [TBL] [Abstract][Full Text] [Related]
14. Reorganization of auditory cortex in tinnitus. Mühlnickel W; Elbert T; Taub E; Flor H Proc Natl Acad Sci U S A; 1998 Aug; 95(17):10340-3. PubMed ID: 9707649 [TBL] [Abstract][Full Text] [Related]
15. Neural correlates of tinnitus duration and distress: a positron emission tomography study. Schecklmann M; Landgrebe M; Poeppl TB; Kreuzer P; Männer P; Marienhagen J; Wack DS; Kleinjung T; Hajak G; Langguth B Hum Brain Mapp; 2013 Jan; 34(1):233-40. PubMed ID: 22021023 [TBL] [Abstract][Full Text] [Related]
16. Focal metabolic activation in the predominant left auditory cortex in patients suffering from tinnitus: a PET study with [18F]deoxyglucose. Arnold W; Bartenstein P; Oestreicher E; Römer W; Schwaiger M ORL J Otorhinolaryngol Relat Spec; 1996; 58(4):195-9. PubMed ID: 8883104 [TBL] [Abstract][Full Text] [Related]
17. Early cortical metabolic rearrangement related to clinical data in idiopathic sudden sensorineural hearing loss. Micarelli A; Chiaravalloti A; Viziano A; Danieli R; Schillaci O; Alessandrini M Hear Res; 2017 Jul; 350():91-99. PubMed ID: 28460253 [TBL] [Abstract][Full Text] [Related]
18. Quantitative analysis of cochlear active mechanisms in tinnitus subjects with normal hearing sensitivity: Time-frequency analysis of transient evoked otoacoustic emissions and contralateral suppression. Paglialonga A; Fiocchi S; Del Bo L; Ravazzani P; Tognola G Auris Nasus Larynx; 2011 Feb; 38(1):33-40. PubMed ID: 20558020 [TBL] [Abstract][Full Text] [Related]
19. Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Knipper M; Van Dijk P; Nunes I; Rüttiger L; Zimmermann U Prog Neurobiol; 2013 Dec; 111():17-33. PubMed ID: 24012803 [TBL] [Abstract][Full Text] [Related]
20. Using resting state functional connectivity to unravel networks of tinnitus. Husain FT; Schmidt SA Hear Res; 2014 Jan; 307():153-62. PubMed ID: 23895873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]