These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27663199)

  • 1. Identifying candidates for targeted gait rehabilitation after stroke: better prediction through biomechanics-informed characterization.
    Awad LN; Reisman DS; Pohlig RT; Binder-Macleod SA
    J Neuroeng Rehabil; 2016 Sep; 13(1):84. PubMed ID: 27663199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing The Cost of Transport and Increasing Walking Distance After Stroke: A Randomized Controlled Trial on Fast Locomotor Training Combined With Functional Electrical Stimulation.
    Awad LN; Reisman DS; Pohlig RT; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Aug; 30(7):661-70. PubMed ID: 26621366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait Rehabilitation Using Functional Electrical Stimulation Induces Changes in Ankle Muscle Coordination in Stroke Survivors: A Preliminary Study.
    Allen JL; Ting LH; Kesar TM
    Front Neurol; 2018; 9():1127. PubMed ID: 30619077
    [No Abstract]   [Full Text] [Related]  

  • 4. Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study.
    Alingh JF; Groen BE; Kamphuis JF; Geurts ACH; Weerdesteyn V
    J Neuroeng Rehabil; 2021 Apr; 18(1):69. PubMed ID: 33892754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting paretic propulsion to improve poststroke walking function: a preliminary study.
    Awad LN; Reisman DS; Kesar TM; Binder-Macleod SA
    Arch Phys Med Rehabil; 2014 May; 95(5):840-8. PubMed ID: 24378803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke.
    Hsiao H; Knarr BA; Pohlig RT; Higginson JS; Binder-Macleod SA
    J Biomech; 2016 Feb; 49(3):388-95. PubMed ID: 26776931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review.
    Roelker SA; Bowden MG; Kautz SA; Neptune RR
    Gait Posture; 2019 Feb; 68():6-14. PubMed ID: 30408710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
    Hsiao H; Awad LN; Palmer JA; Higginson JS; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Sep; 30(8):743-52. PubMed ID: 26721869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Baseline predictors of treatment gains in peak propulsive force in individuals poststroke.
    Hsiao H; Higginson JS; Binder-Macleod SA
    J Neuroeng Rehabil; 2016 Jan; 13():2. PubMed ID: 26767921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central Drive to the Paretic Ankle Plantarflexors Affects the Relationship Between Propulsion and Walking Speed After Stroke.
    Awad LN; Hsiao H; Binder-Macleod SA
    J Neurol Phys Ther; 2020 Jan; 44(1):42-48. PubMed ID: 31834220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Design of FastFES Treatment to Improve Propulsive Force Symmetry During Post-stroke Gait: A Feasibility Study.
    Sauder NR; Meyer AJ; Allen JL; Ting LH; Kesar TM; Fregly BJ
    Front Neurorobot; 2019; 13():80. PubMed ID: 31632261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
    Lewek MD; Raiti C; Doty A
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1011-1019. PubMed ID: 30558525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time course of functional and biomechanical improvements during a gait training intervention in persons with chronic stroke.
    Reisman D; Kesar T; Perumal R; Roos M; Rudolph K; Higginson J; Helm E; Binder-Macleod S
    J Neurol Phys Ther; 2013 Dec; 37(4):159-65. PubMed ID: 24189337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined user-driven treadmill control and functional electrical stimulation increases walking speeds poststroke.
    Ray NT; Reisman DS; Higginson JS
    J Biomech; 2021 Jul; 124():110480. PubMed ID: 34126560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Timing of propulsion-related biomechanical variables is impaired in individuals with post-stroke hemiparesis.
    Alam Z; Rendos NK; Vargas AM; Makanjuola J; Kesar TM
    Gait Posture; 2022 Jul; 96():275-278. PubMed ID: 35716486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.
    Genthe K; Schenck C; Eicholtz S; Zajac-Cox L; Wolf S; Kesar TM
    Top Stroke Rehabil; 2018 Apr; 25(3):186-193. PubMed ID: 29457532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Paretic Propulsion and Walking Speed With a Soft Robotic Exosuit: A
    Porciuncula F; Baker TC; Arumukhom Revi D; Bae J; Sloutsky R; Ellis TD; Walsh CJ; Awad LN
    Front Neurorobot; 2021; 15():689577. PubMed ID: 34393750
    [No Abstract]   [Full Text] [Related]  

  • 18. The influence of backward versus forward locomotor training on gait speed and balance control post-stroke: Recovery or compensation?
    Bansal K; Vistamehr A; Conroy CL; Fox EJ; Rose DK
    J Biomech; 2023 Jun; 155():111644. PubMed ID: 37229888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paretic Propulsion and Trailing Limb Angle Are Key Determinants of Long-Distance Walking Function After Stroke.
    Awad LN; Binder-Macleod SA; Pohlig RT; Reisman DS
    Neurorehabil Neural Repair; 2015 Jul; 29(6):499-508. PubMed ID: 25385764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ankle-targeted exosuit resistance increases paretic propulsion in people post-stroke.
    Swaminathan K; Porciuncula F; Park S; Kannan H; Erard J; Wendel N; Baker T; Ellis TD; Awad LN; Walsh CJ
    J Neuroeng Rehabil; 2023 Jun; 20(1):85. PubMed ID: 37391851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.