These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27663199)

  • 21. Linking gait mechanics with perceived quality of life and participation after stroke.
    Rowland DM; Lewek MD
    PLoS One; 2022; 17(9):e0274511. PubMed ID: 36129881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effectiveness of rehabilitation interventions to improve paretic propulsion in individuals with stroke - A systematic review.
    Alingh JF; Groen BE; Van Asseldonk EHF; Geurts ACH; Weerdesteyn V
    Clin Biomech (Bristol, Avon); 2020 Jan; 71():176-188. PubMed ID: 31770660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motor learning during poststroke gait rehabilitation: a case study.
    Kesar TM; Sauer MJ; Binder-Macleod SA; Reisman DS
    J Neurol Phys Ther; 2014 Jul; 38(3):183-9. PubMed ID: 24933501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke.
    Palmer JA; Hsiao H; Awad LN; Binder-Macleod SA
    Clin Neurophysiol; 2016 Mar; 127(3):1837-44. PubMed ID: 26724913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis.
    Balasubramanian CK; Bowden MG; Neptune RR; Kautz SA
    Arch Phys Med Rehabil; 2007 Jan; 88(1):43-9. PubMed ID: 17207674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Limb contribution to increased self-selected walking speeds during body weight support in individuals poststroke.
    Hurt CP; Burgess JK; Brown DA
    Gait Posture; 2015 Mar; 41(3):857-9. PubMed ID: 25770079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms to increase propulsive force for individuals poststroke.
    Hsiao H; Knarr BA; Higginson JS; Binder-Macleod SA
    J Neuroeng Rehabil; 2015 Apr; 12():40. PubMed ID: 25898145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Verbal feedback enhances motor learning during post-stroke gait retraining.
    Rendos NK; Zajac-Cox L; Thomas R; Sato S; Eicholtz S; Kesar TM
    Top Stroke Rehabil; 2021 Jul; 28(5):362-377. PubMed ID: 32942960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of measurements of propulsion used to reflect changes in walking speed in individuals poststroke.
    Hsiao H; Zabielski TM; Palmer JA; Higginson JS; Binder-Macleod SA
    J Biomech; 2016 Dec; 49(16):4107-4112. PubMed ID: 27756571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immediate improvements in post-stroke gait biomechanics are induced with both real-time limb position and propulsive force biofeedback.
    Santucci V; Alam Z; Liu J; Spencer J; Faust A; Cobb A; Konantz J; Eicholtz S; Wolf S; Kesar TM
    J Neuroeng Rehabil; 2023 Mar; 20(1):37. PubMed ID: 37004111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis.
    Allen JL; Kautz SA; Neptune RR
    Clin Biomech (Bristol, Avon); 2014 Aug; 29(7):780-6. PubMed ID: 24973825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. POWER training in chronic stroke individuals: differences between responders and nonresponders.
    Aaron SE; Hunnicutt JL; Embry AE; Bowden MG; Gregory CM
    Top Stroke Rehabil; 2017 Oct; 24(7):496-502. PubMed ID: 28482762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of fast functional electrical stimulation gait training on mechanical recovery in poststroke gait.
    Hakansson NA; Kesar T; Reisman D; Binder-Macleod S; Higginson JS
    Artif Organs; 2011 Mar; 35(3):217-20. PubMed ID: 21401663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ankle stiffness modulation during different gait speeds in individuals post-stroke.
    Hinton EH; Likens A; Hsiao HY; Binder-Markey BI; Binder-Macleod SA; Knarr BA
    Clin Biomech (Bristol, Avon); 2022 Oct; 99():105761. PubMed ID: 36099707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-Time Visual Kinematic Feedback During Overground Walking Improves Gait Biomechanics in Individuals Post-Stroke.
    Hinton EH; Buffum R; Kingston D; Stergiou N; Kesar T; Bierner S; Knarr BA
    Ann Biomed Eng; 2024 Feb; 52(2):355-363. PubMed ID: 37870663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in Post-Stroke Gait Biomechanics Induced by One Session of Gait Training.
    Kesar TM; Reisman DS; Higginson JS; Awad LN; Binder-Macleod SA
    Phys Med Rehabil Int; 2015; 2(10):. PubMed ID: 27819067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking.
    Turns LJ; Neptune RR; Kautz SA
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1127-35. PubMed ID: 17826457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking.
    Bowden MG; Balasubramanian CK; Neptune RR; Kautz SA
    Stroke; 2006 Mar; 37(3):872-6. PubMed ID: 16456121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits.
    Awad LN; Lewek MD; Kesar TM; Franz JR; Bowden MG
    J Neuroeng Rehabil; 2020 Oct; 17(1):139. PubMed ID: 33087137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of stroke severity and training duration on locomotor recovery after stroke: a pilot study.
    Plummer P; Behrman AL; Duncan PW; Spigel P; Saracino D; Martin J; Fox E; Thigpen M; Kautz SA
    Neurorehabil Neural Repair; 2007; 21(2):137-51. PubMed ID: 17312089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.