These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 27663270)
21. Molecular analysis of Plasmodium falciparum co-chaperone Aha1 supports its interaction with and regulation of Hsp90 in the malaria parasite. Chua CS; Low H; Lehming N; Sim TS Int J Biochem Cell Biol; 2012 Jan; 44(1):233-45. PubMed ID: 22100910 [TBL] [Abstract][Full Text] [Related]
22. The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation. Mercier R; Wolmarans A; Schubert J; Neuweiler H; Johnson JL; LaPointe P Nat Commun; 2019 Mar; 10(1):1273. PubMed ID: 30894538 [TBL] [Abstract][Full Text] [Related]
23. Large Rotation of the N-terminal Domain of Hsp90 Is Important for Interaction with Some but Not All Client Proteins. Daturpalli S; Knieß RA; Lee CT; Mayer MP J Mol Biol; 2017 May; 429(9):1406-1423. PubMed ID: 28363677 [TBL] [Abstract][Full Text] [Related]
24. Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: a computational study. Blacklock K; Verkhivker GM PLoS One; 2013; 8(8):e71936. PubMed ID: 23977182 [TBL] [Abstract][Full Text] [Related]
25. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands. Vettoretti G; Moroni E; Sattin S; Tao J; Agard DA; Bernardi A; Colombo G Sci Rep; 2016 Apr; 6():23830. PubMed ID: 27032695 [TBL] [Abstract][Full Text] [Related]
26. Allosteric Mechanism of the Hsp90 Chaperone Interactions with Cochaperones and Client Proteins by Modulating Communication Spines of Coupled Regulatory Switches: Integrative Atomistic Modeling of Hsp90 Signaling in Dynamic Interaction Networks. Astl L; Stetz G; Verkhivker GM J Chem Inf Model; 2020 Jul; 60(7):3616-3631. PubMed ID: 32519853 [TBL] [Abstract][Full Text] [Related]
27. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. Panaretou B; Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH EMBO J; 1998 Aug; 17(16):4829-36. PubMed ID: 9707442 [TBL] [Abstract][Full Text] [Related]
28. Controlling protein function by fine-tuning conformational flexibility. Schmid S; Hugel T Elife; 2020 Jul; 9():. PubMed ID: 32697684 [TBL] [Abstract][Full Text] [Related]
29. Evolution of the conformational dynamics of the molecular chaperone Hsp90. Riedl S; Bilgen E; Agam G; Hirvonen V; Jussupow A; Tippl F; Riedl M; Maier A; Becker CFW; Kaila VRI; Lamb DC; Buchner J Nat Commun; 2024 Oct; 15(1):8627. PubMed ID: 39366960 [TBL] [Abstract][Full Text] [Related]
30. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics. Dixit A; Verkhivker GM PLoS One; 2012; 7(5):e37605. PubMed ID: 22624053 [TBL] [Abstract][Full Text] [Related]
31. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. Czemeres J; Buse K; Verkhivker GM PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381 [TBL] [Abstract][Full Text] [Related]
32. Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands. Sattin S; Tao J; Vettoretti G; Moroni E; Pennati M; Lopergolo A; Morelli L; Bugatti A; Zuehlke A; Moses M; Prince T; Kijima T; Beebe K; Rusnati M; Neckers L; Zaffaroni N; Agard DA; Bernardi A; Colombo G Chemistry; 2015 Sep; 21(39):13598-608. PubMed ID: 26286886 [TBL] [Abstract][Full Text] [Related]
33. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. Meyer P; Prodromou C; Liao C; Hu B; Roe SM; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH EMBO J; 2004 Mar; 23(6):1402-10. PubMed ID: 15039704 [TBL] [Abstract][Full Text] [Related]
34. Functional Role and Hierarchy of the Intermolecular Interactions in Binding of Protein Kinase Clients to the Hsp90-Cdc37 Chaperone: Structure-Based Network Modeling of Allosteric Regulation. Stetz G; Verkhivker GM J Chem Inf Model; 2018 Feb; 58(2):405-421. PubMed ID: 29432007 [TBL] [Abstract][Full Text] [Related]
35. Modulation of the Hsp90 chaperone cycle by a stringent client protein. Lorenz OR; Freiburger L; Rutz DA; Krause M; Zierer BK; Alvira S; Cuéllar J; Valpuesta JM; Madl T; Sattler M; Buchner J Mol Cell; 2014 Mar; 53(6):941-53. PubMed ID: 24613341 [TBL] [Abstract][Full Text] [Related]
36. The Hsp90 Chaperone: Lee BL; Rashid S; Wajda B; Wolmarans A; LaPointe P; Spyracopoulos L Biochemistry; 2019 Apr; 58(14):1869-1877. PubMed ID: 30869872 [TBL] [Abstract][Full Text] [Related]
37. Evidence for chaperone heterocomplexes containing both Hsp90 and VCP. Prince T; Shao J; Matts RL; Hartson SD Biochem Biophys Res Commun; 2005 Jun; 331(4):1331-7. PubMed ID: 15883021 [TBL] [Abstract][Full Text] [Related]
38. A methylated lysine is a switch point for conformational communication in the chaperone Hsp90. Rehn A; Lawatscheck J; Jokisch ML; Mader SL; Luo Q; Tippel F; Blank B; Richter K; Lang K; Kaila VRI; Buchner J Nat Commun; 2020 Mar; 11(1):1219. PubMed ID: 32139682 [TBL] [Abstract][Full Text] [Related]
39. Stimulation of the ATPase activity of Hsp90 by zerumbone modification of its cysteine residues destabilizes its clients and causes cytotoxicity. Nakamoto H; Amaya Y; Komatsu T; Suzuki T; Dohmae N; Nakamura Y; Jantan I; Miyata Y Biochem J; 2018 Aug; 475(15):2559-2576. PubMed ID: 30045873 [TBL] [Abstract][Full Text] [Related]