These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27663440)

  • 1. Rapid bioremediation of Alizarin Red S and Quinizarine Green SS dyes using Trichoderma lixii F21 mediated by biosorption and enzymatic processes.
    Adnan LA; Sathishkumar P; Yusoff AR; Hadibarata T; Ameen F
    Bioprocess Biosyst Eng; 2017 Jan; 40(1):85-97. PubMed ID: 27663440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decolorization of Alizarin Red and other synthetic dyes by a recombinant laccase from Pichia pastoris.
    Zheng M; Chi Y; Yi H; Shao S
    Biotechnol Lett; 2014 Jan; 36(1):39-45. PubMed ID: 24078122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential.
    Routoula E; Patwardhan SV
    Environ Sci Technol; 2020 Jan; 54(2):647-664. PubMed ID: 31913605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation mechanism and potential of copper by actively growing fungus Trichoderma lixii CR700 isolated from electroplating wastewater.
    Kumar V; Dwivedi SK
    J Environ Manage; 2021 Jan; 277():111370. PubMed ID: 32979751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological degradation of anthroquinone and azo dyes by a novel laccase from Lentinus sp.
    Hsu CA; Wen TN; Su YC; Jiang ZB; Chen CW; Shyur LF
    Environ Sci Technol; 2012 May; 46(9):5109-17. PubMed ID: 22494443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microflora involved in textile dye waste removal.
    Abd El-Rahim WM; Moawad H; Khalafallah M
    J Basic Microbiol; 2003; 43(3):167-74. PubMed ID: 12761767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Degradation of anthraquinone blue by Trametes trogii].
    Levin L; Jordan A; Forchiassin F; Viale A
    Rev Argent Microbiol; 2001; 33(4):223-8. PubMed ID: 11833254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of the salt-tolerant laccase-producing strain Trichoderma viride Pers. NFCCI-2745 from an estuary in the bioremediation of phenol-polluted environments.
    Divya LM; Prasanth GK; Sadasivan C
    J Basic Microbiol; 2014 Jun; 54(6):542-7. PubMed ID: 23712577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cnidarian-derived filamentous fungi from Brazil: isolation, characterisation and RBBR decolourisation screening.
    Da Silva M; Passarini MR; Bonugli RC; Sette LD
    Environ Technol; 2008 Dec; 29(12):1331-9. PubMed ID: 19149354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decolorization and biodegradation of remazol brilliant blue R by bilirubin oxidase.
    Liu Y; Huang J; Zhang X
    J Biosci Bioeng; 2009 Dec; 108(6):496-500. PubMed ID: 19914582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low pH dye decolorization with ascomycete Lamprospora wrightii laccase.
    Mueangtoom K; Kittl R; Mann O; Haltrich D; Ludwig R
    Biotechnol J; 2010 Aug; 5(8):857-70. PubMed ID: 20652905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain.
    Ren S; Guo J; Zeng G; Sun G
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1316-21. PubMed ID: 16622679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli.
    Cerboneschi M; Corsi M; Bianchini R; Bonanni M; Tegli S
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8235-45. PubMed ID: 26062529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06.
    Nor NM; Hadibarata T; Zubir MM; Lazim ZM; Adnan LA; Fulazzaky MA
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2167-75. PubMed ID: 26275435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccase chloride inhibition reduction by an anthraquinonic substrate.
    Enaud E; Trovaslet M; Naveau F; Decristoforo A; Bizet S; Vanhulle S; Jolivalt C
    Enzyme Microb Technol; 2011 Dec; 49(6-7):517-25. PubMed ID: 22142726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial degradation of anthraquinone dyes.
    Li HH; Wang YT; Wang Y; Wang HX; Sun KK; Lu ZM
    J Zhejiang Univ Sci B; 2019 Jun; 20(6):528-540. PubMed ID: 31090278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pathway for biodegradation of an anthraquinone dye, C.I. disperse red 15, by a yeast strain Pichia anomala.
    Itoh K; Kitade Y; Yatome C
    Bull Environ Contam Toxicol; 1996 Mar; 56(3):413-8. PubMed ID: 8825963
    [No Abstract]   [Full Text] [Related]  

  • 18. Biodegradation of anthraquinone dyes by Shewanella sp. NTOU1 under anaerobic conditions.
    Chi WC; Chen CH; Liu SM
    Water Sci Technol; 2009; 60(4):889-99. PubMed ID: 19700827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase.
    Casas N; Parella T; Vicent T; Caminal G; Sarrà M
    Chemosphere; 2009 Jun; 75(10):1344-9. PubMed ID: 19298999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring potential bacterial populations for enhanced anthraquinone dyes biodegradation: a critical review.
    Jamal M; Awadasseid A; Su X
    Biotechnol Lett; 2022 Sep; 44(9):1011-1025. PubMed ID: 35871405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.