BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27663705)

  • 1. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate.
    Han W; Hu Y; Li S; Nie Q; Zhao H; Tang J
    Waste Manag; 2016 Dec; 58():335-340. PubMed ID: 27663705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.
    Han W; Hu Y; Li S; Li F; Tang J
    Bioresour Technol; 2016 Oct; 218():589-94. PubMed ID: 27416509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors.
    Han W; Liu DN; Shi YW; Tang JH; Li YF; Ren NQ
    Bioresour Technol; 2015 Mar; 180():54-8. PubMed ID: 25590421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentative hydrogen production from molasses wastewater in a continuous mixed immobilized sludge reactor.
    Han W; Wang B; Zhou Y; Wang DX; Wang Y; Yue LR; Li YF; Ren NQ
    Bioresour Technol; 2012 Apr; 110():219-23. PubMed ID: 22326329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous biohydrogen production from waste bread by anaerobic sludge.
    Han W; Huang J; Zhao H; Li Y
    Bioresour Technol; 2016 Jul; 212():1-5. PubMed ID: 27065225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration.
    Kim SH; Han SK; Shin HS
    Water Sci Technol; 2005; 52(10-11):23-9. PubMed ID: 16459773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous biohydrogen and bioethanol production from anaerobic fermentation with immobilized sludge.
    Han W; Wang Z; Chen H; Yao X; Li Y
    J Biomed Biotechnol; 2011; 2011():343791. PubMed ID: 21799660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems.
    Han W; Yan Y; Shi Y; Gu J; Tang J; Zhao H
    Sci Rep; 2016 Dec; 6():38395. PubMed ID: 27910937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Continuous operation of hydrogen bio-production reactor with ethanol-type fermentation].
    Ren NQ; Gong ML; Xing DF
    Huan Jing Ke Xue; 2004 Nov; 25(6):113-6. PubMed ID: 15759893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of reactor configuration on biogas production from wheat straw hydrolysate.
    Kaparaju P; Serrano M; Angelidaki I
    Bioresour Technol; 2009 Dec; 100(24):6317-23. PubMed ID: 19647428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Start-up and continuous operation of bio-hydrogen production reactor at pH 5].
    Gong ML; Ren NQ; Tang J
    Huan Jing Ke Xue; 2005 Mar; 26(2):177-80. PubMed ID: 16004324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous hydrogen and methane production from Agave tequilana bagasse hydrolysate by sequential process to maximize energy recovery efficiency.
    Montiel Corona V; Razo-Flores E
    Bioresour Technol; 2018 Feb; 249():334-341. PubMed ID: 29054064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.
    Cheng XY; Li Q; Liu CZ
    Bioresour Technol; 2012 Jun; 114():327-33. PubMed ID: 22487130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis.
    Han W; Hu YY; Li SY; Li FF; Tang JH
    Bioresour Technol; 2016 Dec; 221():318-323. PubMed ID: 27648851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.
    Karthikeyan OP; Selvam A; Wong JW
    Bioresour Technol; 2016 Jan; 200():366-73. PubMed ID: 26512860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate.
    Shi Y; Zhao XT; Cao P; Hu Y; Zhang L; Jia Y; Lu Z
    Biotechnol Lett; 2009 Sep; 31(9):1327-33. PubMed ID: 19466560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture.
    Kongjan P; O-Thong S; Kotay M; Min B; Angelidaki I
    Biotechnol Bioeng; 2010 Apr; 105(5):899-908. PubMed ID: 19998285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate.
    Zhao L; Cao GL; Sheng T; Ren HY; Wang AJ; Zhang J; Zhong YJ; Ren NQ
    Bioresour Technol; 2017 Nov; 243():548-555. PubMed ID: 28697457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of organic loading rate on methane production in a CSTR from physicochemical sludge generated in a poultry slaughterhouse.
    López-Escobar LA; Martínez-Hernández S; Corte-Cano G; Méndez-Contreras JM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1710-7. PubMed ID: 25320858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.