BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 27664692)

  • 41. Convolutional capture of the expansion of extra virgin olive oil droplets to quantify adulteration.
    Pradana-Lopez S; Perez-Calabuig AM; Cancilla JC; Garcia-Rodriguez Y; Torrecilla JS
    Food Chem; 2022 Jan; 368():130765. PubMed ID: 34474243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preliminary study on application of mid infrared spectroscopy for the evaluation of the virgin olive oil "freshness".
    Sinelli N; Cosio MS; Gigliotti C; Casiraghi E
    Anal Chim Acta; 2007 Aug; 598(1):128-34. PubMed ID: 17693316
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Discriminating and quantifying potential adulteration in virgin olive oil by near infrared spectroscopy with BP-ANN and PLS].
    Weng XX; Lu F; Wang CX; Qi YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3283-7. PubMed ID: 20210151
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Post-heating Fluorescence-based Alteration and Adulteration Detection of Extra Virgin Olive Oil.
    Hamdy O; Mohammed HS
    J Fluoresc; 2023 Jul; 33(4):1631-1639. PubMed ID: 36808529
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics.
    Petrakis EA; Polissiou MG
    Talanta; 2017 Jan; 162():558-566. PubMed ID: 27837871
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of Hazelnut and Almond Adulteration in Olive Oil: An Approach by qPCR.
    Ramos-Gómez S; Busto MD; Ortega N
    Molecules; 2023 May; 28(10):. PubMed ID: 37241987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Preliminary Study on the Potential of FT-IR Spectroscopy and Chemometrics for Tracing the Geographical Origin of Moroccan Virgin Olive Oils.
    Laouni A; El Orche A; Elhamdaoui O; Karrouchi K; El Karbane M; Bouatia M
    J AOAC Int; 2023 May; 106(3):804-812. PubMed ID: 36326447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantification and classification of corn and sunflower oils as adulterants in olive oil using chemometrics and FTIR spectra.
    Rohman A; Che Man YB
    ScientificWorldJournal; 2012; 2012():250795. PubMed ID: 22448127
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Geographic classification of extra virgin olive oils from the eastern Mediterranean by chemometric analysis of visible and near-infrared spectroscopic data.
    Downey G; McIntyre P; Davies AN
    Appl Spectrosc; 2003 Feb; 57(2):158-63. PubMed ID: 14610952
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nontargeted, Rapid Screening of Extra Virgin Olive Oil Products for Authenticity Using Near-Infrared Spectroscopy in Combination with Conformity Index and Multivariate Statistical Analyses.
    Karunathilaka SR; Kia AF; Srigley C; Chung JK; Mossoba MM
    J Food Sci; 2016 Oct; 81(10):C2390-C2397. PubMed ID: 27626761
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detection of adulterants in olive oil by headspace-mass spectrometry.
    Marcos Lorenzo I; Pérez Pavón JL; Fernández Laespada ME; García Pinto C; Moreno Cordero B
    J Chromatogr A; 2002 Feb; 945(1-2):221-30. PubMed ID: 11862986
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preliminary study on the potential application of Fourier-transform mid-infrared for the evaluation of overall quality and authenticity of Moroccan virgin olive oil.
    Zaroual H; El Hadrami EM; Karoui R
    J Sci Food Agric; 2021 May; 101(7):2901-2911. PubMed ID: 33155679
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification.
    Durán Merás I; Domínguez Manzano J; Airado Rodríguez D; Muñoz de la Peña A
    Talanta; 2018 Feb; 178():751-762. PubMed ID: 29136891
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural networks applied to characterize blends containing refined and extra virgin olive oils.
    Aroca-Santos R; Cancilla JC; Pariente ES; Torrecilla JS
    Talanta; 2016 Dec; 161():304-308. PubMed ID: 27769410
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of thermal oxidation on detection of adulteration at low concentrations in extra virgin olive oil: Study based on laser-induced fluorescence spectroscopy combined with KPCA-LDA.
    Li Y; Chen S; Chen H; Guo P; Li T; Xu Q
    Food Chem; 2020 Mar; 309():125669. PubMed ID: 31683148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detecting and quantifying sunflower oil adulteration in extra virgin olive oils from the eastern mediterranean by visible and near-infrared spectroscopy.
    Downey G; McIntyre P; Davies AN
    J Agric Food Chem; 2002 Sep; 50(20):5520-5. PubMed ID: 12236673
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative Detection of Extra Virgin Olive Oil Adulteration, as Opposed to Peanut and Soybean Oil, Employing LED-Induced Fluorescence Spectroscopy.
    Zhang T; Liu Y; Dai Z; Cui L; Lin H; Li Z; Wu K; Liu G
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161972
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improvement of the Fourier Transform Near Infrared Method to Evaluate Extra Virgin Olive Oils by Analyzing 1,2-Diacylglycerols and 1,3-Diacylglycerols and Adding Unesterified Fatty Acids.
    Azizian H; Wang SC; Li X; Kramer JKG
    Lipids; 2018 Nov; 53(11-12):1097-1112. PubMed ID: 30652315
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Review of the use of phytosterols as a detection tool for adulteration of olive oil with hazelnut oil.
    Azadmard-Damirchi S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Jan; 27(1):1-10. PubMed ID: 19763990
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of hidden hazelnut oil proteins in extra virgin olive oil by cold acetone precipitation followed by in-solution tryptic digestion and MALDI-TOF-MS analysis.
    De Ceglie C; Calvano CD; Zambonin CG
    J Agric Food Chem; 2014 Oct; 62(39):9401-9. PubMed ID: 25209075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.