BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27664696)

  • 1. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania.
    Spiteri M; Rogers KM; Jamin E; Thomas F; Guyader S; Lees M; Rutledge DN
    Food Chem; 2017 Feb; 217():766-772. PubMed ID: 27664696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey.
    Adams CJ; Manley-Harris M; Molan PC
    Carbohydr Res; 2009 May; 344(8):1050-3. PubMed ID: 19368902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part I--Honey systems.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():484-91. PubMed ID: 26920322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone.
    Rückriemen J; Klemm O; Henle T
    Food Chem; 2017 Sep; 230():540-546. PubMed ID: 28407946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part III--A model to simulate the conversion.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():500-6. PubMed ID: 26920324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.
    Hellwig M; Rückriemen J; Sandner D; Henle T
    J Agric Food Chem; 2017 May; 65(17):3532-3540. PubMed ID: 28415841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of high pressure processing on the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka (Leptospermum scoparium) honey and models thereof.
    Grainger MN; Manley-Harris M; Fauzi NA; Farid MM
    Food Chem; 2014 Jun; 153():134-9. PubMed ID: 24491711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey.
    Atrott J; Haberlau S; Henle T
    Carbohydr Res; 2012 Nov; 361():7-11. PubMed ID: 22960208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part II--Model systems.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():492-9. PubMed ID: 26920323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Temporal Apparent C4 Sugar Change in Manuka Honey.
    Chernyshev A; Braggins T
    J Agric Food Chem; 2020 Apr; 68(14):4261-4267. PubMed ID: 32159341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and Quantitation of 2-Acetyl-1-pyrroline in Manuka Honey (Leptospermum scoparium).
    Rückriemen J; Schwarzenbolz U; Adam S; Henle T
    J Agric Food Chem; 2015 Sep; 63(38):8488-92. PubMed ID: 26365614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal.
    Oelschlaegel S; Gruner M; Wang PN; Boettcher A; Koelling-Speer I; Speer K
    J Agric Food Chem; 2012 Jul; 60(29):7229-37. PubMed ID: 22676798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of the antibacterial activity of commercial manuka and Leptospermum honeys from Australia and New Zealand with methylglyoxal content and other physicochemical characteristics.
    Green KJ; Lawag IL; Locher C; Hammer KA
    PLoS One; 2022; 17(7):e0272376. PubMed ID: 35901185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part V - The rate determining step.
    Owens A; Lane JR; Manley-Harris M; Marie Jensen A; Jørgensen S
    Food Chem; 2019 Mar; 276():636-642. PubMed ID: 30409643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence markers in some New Zealand honeys.
    Bong J; Loomes KM; Schlothauer RC; Stephens JM
    Food Chem; 2016 Feb; 192():1006-14. PubMed ID: 26304441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of honey of different floral origins by a combination of various chemical parameters.
    Jandrić Z; Haughey SA; Frew RD; McComb K; Galvin-King P; Elliott CT; Cannavan A
    Food Chem; 2015 Dec; 189():52-9. PubMed ID: 26190600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Antibacterial Activity of Australian Leptospermum Honey Correlates with Methylglyoxal Levels.
    Cokcetin NN; Pappalardo M; Campbell LT; Brooks P; Carter DA; Blair SE; Harry EJ
    PLoS One; 2016; 11(12):e0167780. PubMed ID: 28030589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part IV - Formation of HMF.
    Grainger MNC; Owens A; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2017 Oct; 232():648-655. PubMed ID: 28490123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dihydroxyacetone Production in the Nectar of Australian Leptospermum Is Species Dependent.
    Williams SD; Pappalardo L; Bishop J; Brooks PR
    J Agric Food Chem; 2018 Oct; 66(42):11133-11140. PubMed ID: 30289260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand.
    Mavric E; Wittmann S; Barth G; Henle T
    Mol Nutr Food Res; 2008 Apr; 52(4):483-9. PubMed ID: 18210383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.