These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 27664723)
1. Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Balashanmugam P; Balakumaran MD; Murugan R; Dhanapal K; Kalaichelvan PT Microbiol Res; 2016 Nov; 192():52-64. PubMed ID: 27664723 [TBL] [Abstract][Full Text] [Related]
2. Biogenic silver nanoparticles from fungal sources: Synthesis, characterization, and antifungal potential. Ahmad N; Malik MA; Wani AH; Bhat MY Microb Pathog; 2024 Aug; 193():106742. PubMed ID: 38879139 [TBL] [Abstract][Full Text] [Related]
3. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Krishnaraj C; Ramachandran R; Mohan K; Kalaichelvan PT Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():95-9. PubMed ID: 22465774 [TBL] [Abstract][Full Text] [Related]
4. Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. Ammar HA; El-Desouky TA J Appl Microbiol; 2016 Jul; 121(1):89-100. PubMed ID: 27002915 [TBL] [Abstract][Full Text] [Related]
5. Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. Khatami M; Nejad MS; Salari S; Almani PG IET Nanobiotechnol; 2016 Aug; 10(4):237-43. PubMed ID: 27463795 [TBL] [Abstract][Full Text] [Related]
6. Silver nanoparticles from Pilimelia columellifera subsp. pallida SL19 strain demonstrated antifungal activity against fungi causing superficial mycoses. Wypij M; Czarnecka J; Dahm H; Rai M; Golinska P J Basic Microbiol; 2017 Sep; 57(9):793-800. PubMed ID: 28670763 [TBL] [Abstract][Full Text] [Related]
7. Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans. Anasane N; Golińska P; Wypij M; Rathod D; Dahm H; Rai M Mycoses; 2016 Mar; 59(3):157-66. PubMed ID: 26671603 [TBL] [Abstract][Full Text] [Related]
8. Biodirected Synthesis of Silver Nanoparticles Using Aqueous Honey Solutions and Evaluation of Their Antifungal Activity against Pathogenic Czernel G; Bloch D; Matwijczuk A; Cieśla J; Kędzierska-Matysek M; Florek M; Gagoś M Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299335 [TBL] [Abstract][Full Text] [Related]
9. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. Khan S; Singh S; Gaikwad S; Nawani N; Junnarkar M; Pawar SV Environ Sci Pollut Res Int; 2020 Aug; 27(22):27221-27233. PubMed ID: 31065983 [TBL] [Abstract][Full Text] [Related]
10. Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis high stable silver nanoparticles with high antifungal and antibacterial activity. Khatami M; Pourseyedi S IET Nanobiotechnol; 2015 Aug; 9(4):184-90. PubMed ID: 26224347 [TBL] [Abstract][Full Text] [Related]
11. Biogenic synthesis and characterization of silver nanoparticles using aqueous leaf extract of Parvataneni R Drug Chem Toxicol; 2020 May; 43(3):307-321. PubMed ID: 30915859 [TBL] [Abstract][Full Text] [Related]
12. Antifungal activity of polymeric micelles of silver nanoparticles prepared from Psidium guajava aqueous extract. Suwan T; Khongkhunthian S; Okonogi S Drug Discov Ther; 2019; 13(2):62-69. PubMed ID: 31080205 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic aspects of biologically synthesized silver nanoparticles against food- and water-borne microbes. Krishnaraj C; Harper SL; Choe HS; Kim KP; Yun SI Bioprocess Biosyst Eng; 2015 Oct; 38(10):1943-58. PubMed ID: 26178241 [TBL] [Abstract][Full Text] [Related]
14. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Gavade NL; Kadam AN; Suwarnkar MB; Ghodake VP; Garadkar KM Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():953-60. PubMed ID: 25459621 [TBL] [Abstract][Full Text] [Related]
15. Green synthesized silver nanoparticles demonstrating enhanced in vitro and in vivo antibiofilm activity against Candida spp. Muthamil S; Devi VA; Balasubramaniam B; Balamurugan K; Pandian SK J Basic Microbiol; 2018 Apr; 58(4):343-357. PubMed ID: 29411881 [TBL] [Abstract][Full Text] [Related]
16. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. Patra JK; Das G; Baek KH J Photochem Photobiol B; 2016 Aug; 161():200-10. PubMed ID: 27261701 [TBL] [Abstract][Full Text] [Related]
17. Pleurotus sajor-caju can be used to synthesize silver nanoparticles with antifungal activity against Candida albicans. Musa SF; Yeat TS; Kamal LZM; Tabana YM; Ahmed MA; El Ouweini A; Lim V; Keong LC; Sandai D J Sci Food Agric; 2018 Feb; 98(3):1197-1207. PubMed ID: 28746729 [TBL] [Abstract][Full Text] [Related]
18. Biofabrication of silver nanoparticles using Andrographis paniculata. Kotakadi VS; Gaddam SA; Subba Rao Y; Prasad TN; Varada Reddy A; Sai Gopal DV Eur J Med Chem; 2014 Feb; 73():135-40. PubMed ID: 24389508 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. Nasiriboroumand M; Montazer M; Barani H J Photochem Photobiol B; 2018 Feb; 179():98-104. PubMed ID: 29351880 [TBL] [Abstract][Full Text] [Related]
20. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Ahmad A; Wei Y; Syed F; Tahir K; Taj R; Khan AU; Hameed MU; Yuan Q Microb Pathog; 2016 Oct; 99():271-281. PubMed ID: 27591110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]