BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 27664739)

  • 1. Organic acid mediated repression of sugar utilization in rhizobia.
    Iyer B; Rajput MS; Jog R; Joshi E; Bharwad K; Rajkumar S
    Microbiol Res; 2016 Nov; 192():211-220. PubMed ID: 27664739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti.
    Bringhurst RM; Gage DJ
    J Bacteriol; 2002 Oct; 184(19):5385-92. PubMed ID: 12218025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti.
    Garcia PP; Bringhurst RM; Arango Pinedo C; Gage DJ
    J Bacteriol; 2010 Nov; 192(21):5725-35. PubMed ID: 20817764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose and arabinose dependent mineral phosphate solubilization and its succinate-mediated catabolite repression in Rhizobium sp. RM and RS.
    Joshi E; Iyer B; Rajkumar S
    J Biosci Bioeng; 2019 Nov; 128(5):551-557. PubMed ID: 31147219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization.
    Brückner R; Titgemeyer F
    FEMS Microbiol Lett; 2002 Apr; 209(2):141-8. PubMed ID: 12007797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli.
    Park JM; Vinuselvi P; Lee SK
    Gene; 2012 Aug; 504(1):116-21. PubMed ID: 22579471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Carbon catabolite repression or how bacteria choose their favorite sugars].
    Galinier A
    Med Sci (Paris); 2018; 34(6-7):531-539. PubMed ID: 30067204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HPrK regulates succinate-mediated catabolite repression in the gram-negative symbiont Sinorhizobium meliloti.
    Pinedo CA; Gage DJ
    J Bacteriol; 2009 Jan; 191(1):298-309. PubMed ID: 18931135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential uptake of aldoses over fructose and enhanced phosphate solubilization in Rhizobium sp. RM.
    Champaneria A; Iyer B; Rajkumar S
    Appl Microbiol Biotechnol; 2022 Jun; 106(11):4251-4268. PubMed ID: 35661910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):309-14. PubMed ID: 11931563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite repression in Pseudomonas aeruginosa PAO1 regulates the uptake of C4 -dicarboxylates depending on succinate concentration.
    Valentini M; Lapouge K
    Environ Microbiol; 2013 Jun; 15(6):1707-16. PubMed ID: 23253107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon catabolite repression in bacteria.
    Stülke J; Hillen W
    Curr Opin Microbiol; 1999 Apr; 2(2):195-201. PubMed ID: 10322165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotin biosynthesis, transport and utilization in rhizobia.
    Guillén-Navarro K; Encarnación S; Dunn MF
    FEMS Microbiol Lett; 2005 May; 246(2):159-65. PubMed ID: 15899401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dicarboxylate transport by rhizobia.
    Yurgel SN; Kahn ML
    FEMS Microbiol Rev; 2004 Oct; 28(4):489-501. PubMed ID: 15374663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transport and mediation mechanisms of the common sugars in Escherichia coli.
    Luo Y; Zhang T; Wu H
    Biotechnol Adv; 2014; 32(5):905-19. PubMed ID: 24780155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic encyclopedia of sugar utilization pathways in the Shewanella genus.
    Rodionov DA; Yang C; Li X; Rodionova IA; Wang Y; Obraztsova AY; Zagnitko OP; Overbeek R; Romine MF; Reed S; Fredrickson JK; Nealson KH; Osterman AL
    BMC Genomics; 2010 Sep; 11():494. PubMed ID: 20836887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations.
    Görke B; Rak B
    EMBO J; 1999 Jun; 18(12):3370-9. PubMed ID: 10369677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CcpA-mediated repression of Clostridium difficile toxin gene expression.
    Antunes A; Martin-Verstraete I; Dupuy B
    Mol Microbiol; 2011 Feb; 79(4):882-99. PubMed ID: 21299645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae.
    Iyer R; Baliga NS; Camilli A
    J Bacteriol; 2005 Dec; 187(24):8340-9. PubMed ID: 16321938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.