These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 27664748)
1. Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum. Yu X; Jin H; Cheng X; Wang Q; Qi Q Microbiol Res; 2016 Nov; 192():292-299. PubMed ID: 27664748 [TBL] [Abstract][Full Text] [Related]
2. Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Yu X; Jin H; Liu W; Wang Q; Qi Q Microb Cell Fact; 2015 Nov; 14():183. PubMed ID: 26577071 [TBL] [Abstract][Full Text] [Related]
3. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Ramzi AB; Hyeon JE; Kim SW; Park C; Han SO Enzyme Microb Technol; 2015 Dec; 81():1-7. PubMed ID: 26453466 [TBL] [Abstract][Full Text] [Related]
4. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Zhang J; Kang Z; Chen J; Du G Sci Rep; 2015 Feb; 5():8584. PubMed ID: 25716896 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum. Zou Y; Chen T; Feng L; Zhang S; Xing D; Wang Z Biotechnol Lett; 2017 Sep; 39(9):1369-1374. PubMed ID: 28536938 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Feng L; Zhang Y; Fu J; Mao Y; Chen T; Zhao X; Wang Z Biotechnol Bioeng; 2016 Jun; 113(6):1284-93. PubMed ID: 26616115 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of organic photosensitizer Zn-porphyrin by diphtheria toxin repressor (DtxR)-mediated global upregulation of engineered heme biosynthesis pathway in Corynebacterium glutamicum. Ko YJ; Joo YC; Hyeon JE; Lee E; Lee ME; Seok J; Kim SW; Park C; Han SO Sci Rep; 2018 Sep; 8(1):14460. PubMed ID: 30262872 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of an auto-regulated Corynebacterium glutamicum chassis for biosynthesis of 5-aminolevulinic acid. Zhang C; Li Y; Zhu F; Li Z; Lu N; Li Y; Xu Q; Chen N Bioresour Technol; 2020 Dec; 318():124064. PubMed ID: 32905949 [TBL] [Abstract][Full Text] [Related]
9. 5-Aminolevulinic acid level and dye-decolorizing peroxidase expression regulate heme synthesis in Escherichia coli. Feng C; Pan M; Tang L Biotechnol Lett; 2022 Feb; 44(2):271-277. PubMed ID: 34826004 [TBL] [Abstract][Full Text] [Related]
10. Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. Frunzke J; Gätgens C; Brocker M; Bott M J Bacteriol; 2011 Mar; 193(5):1212-21. PubMed ID: 21217007 [TBL] [Abstract][Full Text] [Related]
11. Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production. Zhang J; Kang Z; Ding W; Chen J; Du G Appl Biochem Biotechnol; 2016 Mar; 178(6):1252-62. PubMed ID: 26637361 [TBL] [Abstract][Full Text] [Related]
12. [Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid]. Wang L; Yan S; Yang T; Xu M; Zhang X; Shao M; Li H; Rao Z Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4314-4328. PubMed ID: 34984877 [TBL] [Abstract][Full Text] [Related]
13. Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis. Verderber E; Lucast LJ; Van Dehy JA; Cozart P; Etter JB; Best EA J Bacteriol; 1997 Jul; 179(14):4583-90. PubMed ID: 9226269 [TBL] [Abstract][Full Text] [Related]
14. Cloning and sequence of the Salmonella typhimurium hemL gene and identification of the missing enzyme in hemL mutants as glutamate-1-semialdehyde aminotransferase. Elliott T; Avissar YJ; Rhie GE; Beale SI J Bacteriol; 1990 Dec; 172(12):7071-84. PubMed ID: 2254275 [TBL] [Abstract][Full Text] [Related]
15. Modular control of multiple pathways of Corynebacterium glutamicum for 5-aminolevulinic acid production. Ge F; Li X; Ge Q; Zhu D; Li W; Shi F; Chen H AMB Express; 2021 Dec; 11(1):179. PubMed ID: 34958433 [TBL] [Abstract][Full Text] [Related]
16. Novel inhibitors of glutamyl-tRNA(Glu) reductase identified through cell-based screening of the heme/chlorophyll biosynthetic pathway. Loida PJ; Thompson RL; Walker DM; CaJacob CA Arch Biochem Biophys; 1999 Dec; 372(2):230-7. PubMed ID: 10600160 [TBL] [Abstract][Full Text] [Related]
17. The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum. Heyer A; Gätgens C; Hentschel E; Kalinowski J; Bott M; Frunzke J Microbiology (Reading); 2012 Dec; 158(Pt 12):3020-3031. PubMed ID: 23038807 [TBL] [Abstract][Full Text] [Related]
18. Heme-deficient mutants of Salmonella typhimurium: two genes required for ALA synthesis. Elliott T; Roth JR Mol Gen Genet; 1989 Apr; 216(2-3):303-14. PubMed ID: 2664454 [TBL] [Abstract][Full Text] [Related]
19. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Ilag LL; Kumar AM; Söll D Plant Cell; 1994 Feb; 6(2):265-75. PubMed ID: 7908550 [TBL] [Abstract][Full Text] [Related]
20. Isolation of a Complex Formed Between Nardella C; Boi D; di Salvo ML; Barile A; Stetefeld J; Tramonti A; Contestabile R Front Mol Biosci; 2019; 6():6. PubMed ID: 30863751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]