These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2766492)

  • 1. Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle.
    Humphrey JD; Yin FC
    Circ Res; 1989 Sep; 65(3):805-17. PubMed ID: 2766492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive material properties of intact ventricular myocardium determined from a cylindrical model.
    Guccione JM; McCulloch AD; Waldman LK
    J Biomech Eng; 1991 Feb; 113(1):42-55. PubMed ID: 2020175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of left-ventricular shape on passive filling properties and end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    J Biomech; 2010 Jun; 43(9):1745-53. PubMed ID: 20227697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part II: Three dimensional formulation for thick ventricular wall segments.
    Horowitz A; Sheinman I; Lanir Y
    J Biomech Eng; 1988 Feb; 110(1):62-8. PubMed ID: 3347025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of residual strain on the diastolic function of the left ventricle as predicted by a structural model.
    Nevo E; Lanir Y
    J Biomech; 1994 Dec; 27(12):1433-46. PubMed ID: 7806551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall.
    Okamoto RJ; Moulton MJ; Peterson SJ; Li D; Pasque MK; Guccione JM
    J Biomech Eng; 2000 Oct; 122(5):479-87. PubMed ID: 11091948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On a nonlinear theory for muscle shells: Part II--Application to the beating left ventricle.
    Taber LA
    J Biomech Eng; 1991 Feb; 113(1):63-71. PubMed ID: 2020177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium.
    McCulloch AD; Omens JH
    J Biomech; 1991; 24(7):539-48. PubMed ID: 1880138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element stress analysis of left ventricular mechanics in the beating dog heart.
    Guccione JM; Costa KD; McCulloch AD
    J Biomech; 1995 Oct; 28(10):1167-77. PubMed ID: 8550635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical models in mechanics of the left ventricle.
    Pelle G; Ohayon J; Oddou C; Brun P
    Biorheology; 1984; 21(5):709-22. PubMed ID: 6394067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation of the diastolic left ventricle. Nonlinear elastic effects.
    Janz RF; Grimm AF
    Biophys J; 1973 Jul; 13(7):689-704. PubMed ID: 4715584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics of active contraction in cardiac muscle: Part II--Cylindrical models of the systolic left ventricle.
    Guccione JM; Waldman LK; McCulloch AD
    J Biomech Eng; 1993 Feb; 115(1):82-90. PubMed ID: 8445902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of passive rat left ventricle in diastolic dysfunction.
    Chaudhry HR; Bukiet B; Siegel M; Findley T; Ritter AB; Guzelsu N
    J Theor Biol; 1999 Nov; 201(1):37-46. PubMed ID: 10534434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional analytical (rheological) model of the human left ventricle in passive-active states. Nontraumatic determination of the in vivo values of the rheological parameters.
    Ghista DN; Brady AJ; Radhakrishnan S
    Biophys J; 1973 Aug; 13(8):832-54. PubMed ID: 4726883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function.
    Humphrey JD; Yin FC
    J Biomech Eng; 1987 Nov; 109(4):298-304. PubMed ID: 3695429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of a constitutive relation for passive myocardium: I. A new functional form.
    Humphrey JD; Strumpf RK; Yin FC
    J Biomech Eng; 1990 Aug; 112(3):333-9. PubMed ID: 2214717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of a constitutive relation for passive myocardium: II. Parameter estimation.
    Humphrey JD; Strumpf RK; Yin FC
    J Biomech Eng; 1990 Aug; 112(3):340-6. PubMed ID: 2214718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure-based finite element model of left ventricle passive inflation.
    Xi C; Kassab GS; Lee LC
    Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of cross-fiber deformation on axial fiber stress in myocardium.
    Zahalak GI; de Laborderie V; Guccione JM
    J Biomech Eng; 1999 Aug; 121(4):376-85. PubMed ID: 10464691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.