These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 27664924)
1. Fabrication and characterization of carboxylated starch-chitosan bioactive scaffold for bone regeneration. Shahriarpanah S; Nourmohammadi J; Amoabediny G Int J Biol Macromol; 2016 Dec; 93(Pt A):1069-1078. PubMed ID: 27664924 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration. Nourmohammadi J; Ghaee A; Liavali SH Carbohydr Polym; 2016 Mar; 138():172-9. PubMed ID: 26794750 [TBL] [Abstract][Full Text] [Related]
3. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670 [TBL] [Abstract][Full Text] [Related]
4. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related]
5. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307 [TBL] [Abstract][Full Text] [Related]
6. Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Koç Demir A; Elçin AE; Elçin YM Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():8-14. PubMed ID: 29752122 [TBL] [Abstract][Full Text] [Related]
7. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration. Uswatta SP; Okeke IU; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741 [TBL] [Abstract][Full Text] [Related]
8. Effect of incorporation of montmorillonite on Xylan/Chitosan conjugate scaffold. Ali A; Bano S; Poojary SS; Kumar D; Negi YS Colloids Surf B Biointerfaces; 2019 Aug; 180():75-82. PubMed ID: 31030023 [TBL] [Abstract][Full Text] [Related]
9. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study. Przekora A; Palka K; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384 [TBL] [Abstract][Full Text] [Related]
10. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization. Liu IH; Chang SH; Lin HY Biomed Mater; 2015 May; 10(3):035004. PubMed ID: 25970802 [TBL] [Abstract][Full Text] [Related]
11. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application. Przekora A; Palka K; Ginalska G J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684 [TBL] [Abstract][Full Text] [Related]
12. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908 [TBL] [Abstract][Full Text] [Related]
13. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Nourmohammadi J; Roshanfar F; Farokhi M; Haghbin Nazarpak M Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():951-958. PubMed ID: 28482612 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering. Puvaneswary S; Talebian S; Raghavendran HB; Murali MR; Mehrali M; Afifi AM; Kasim NH; Kamarul T Carbohydr Polym; 2015 Dec; 134():799-807. PubMed ID: 26428187 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263 [TBL] [Abstract][Full Text] [Related]
16. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications. Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353 [TBL] [Abstract][Full Text] [Related]
17. Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism. Li X; Xu P; Cheng Y; Zhang W; Zheng B; Wang Q Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110749. PubMed ID: 32279810 [TBL] [Abstract][Full Text] [Related]
18. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
19. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Kim JA; Lim J; Naren R; Yun HS; Park EK Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019 [TBL] [Abstract][Full Text] [Related]
20. Bioactive diatomite and POSS silica cage reinforced chitosan/Na-carboxymethyl cellulose polyelectrolyte scaffolds for hard tissue regeneration. Tamburaci S; Kimna C; Tihminlioglu F Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():196-208. PubMed ID: 30948053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]