These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 27664927)
1. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Kheiri A; Moosawi Jorf SA; Malihipour A; Saremi H; Nikkhah M Int J Biol Macromol; 2016 Dec; 93(Pt A):1261-1272. PubMed ID: 27664927 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat. Kheiri A; Moosawi Jorf SA; Malihipour A; Saremi H; Nikkhah M Int J Biol Macromol; 2017 Sep; 102():526-538. PubMed ID: 28414109 [TBL] [Abstract][Full Text] [Related]
3. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
4. The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium graminearum. Deshaies M; Lamari N; Ng CKY; Ward P; Doohan FM BMC Plant Biol; 2022 Feb; 22(1):73. PubMed ID: 35183130 [TBL] [Abstract][Full Text] [Related]
5. Imidazolium salts with antifungal potential for the control of head blight of wheat caused by Fusarium graminearum. Ribas AD; Del Ponte EM; Dalbem AM; Dalla-Lana D; Bündchen C; Donato RK; Schrekker HS; Fuentefria AM J Appl Microbiol; 2016 Aug; 121(2):445-52. PubMed ID: 26972421 [TBL] [Abstract][Full Text] [Related]
6. Effects of Kim YT; Monkhung S; Lee YS; Kim KY Can J Microbiol; 2019 Dec; 65(12):904-912. PubMed ID: 31479614 [No Abstract] [Full Text] [Related]
7. Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Pan D; Mionetto A; Tiscornia S; Bettucci L Mycotoxin Res; 2015 Aug; 31(3):137-43. PubMed ID: 25956808 [TBL] [Abstract][Full Text] [Related]
8. Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects. Luo K; Rocheleau H; Qi PF; Zheng YL; Zhao HY; Ouellet T Fungal Biol; 2016 Sep; 120(9):1135-45. PubMed ID: 27567719 [TBL] [Abstract][Full Text] [Related]
9. Antifungal Activity of Quinofumelin against Xiu Q; Bi L; Xu H; Li T; Zhou Z; Li Z; Wang J; Duan Y; Zhou M Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34066154 [No Abstract] [Full Text] [Related]
10. Thymol-based submicron emulsions exhibit antifungal activity against Fusarium graminearum and inhibit Fusarium head blight in wheat. Gill TA; Li J; Saenger M; Scofield SR J Appl Microbiol; 2016 Oct; 121(4):1103-16. PubMed ID: 27253757 [TBL] [Abstract][Full Text] [Related]
11. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. Gunupuru LR; Patel JS; Sumarah MW; Renaud JB; Mantin EG; Prithiviraj B PLoS One; 2019; 14(9):e0220562. PubMed ID: 31509543 [TBL] [Abstract][Full Text] [Related]
12. Linoleic acid isomerase gene FgLAI12 affects sensitivity to salicylic acid, mycelial growth and virulence of Fusarium graminearum. Zhang YZ; Wei ZZ; Liu CH; Chen Q; Xu BJ; Guo ZR; Cao YL; Wang Y; Han YN; Chen C; Feng X; Qiao YY; Zong LJ; Zheng T; Deng M; Jiang QT; Li W; Zheng YL; Wei YM; Qi PF Sci Rep; 2017 Apr; 7():46129. PubMed ID: 28387243 [TBL] [Abstract][Full Text] [Related]
13. Potential of Pseudomonas chlororaphis subsp. aurantiaca Strain Pcho10 as a Biocontrol Agent Against Fusarium graminearum. Hu W; Gao Q; Hamada MS; Dawood DH; Zheng J; Chen Y; Ma Z Phytopathology; 2014 Dec; 104(12):1289-97. PubMed ID: 24941327 [TBL] [Abstract][Full Text] [Related]
14. Impact of Five Succinate Dehydrogenase Inhibitors on DON Biosynthesis of Xu C; Li M; Zhou Z; Li J; Chen D; Duan Y; Zhou M Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31096549 [TBL] [Abstract][Full Text] [Related]
15. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum. Liu N; Fan F; Qiu D; Jiang L Fungal Genet Biol; 2013; 58-59():42-52. PubMed ID: 23994322 [TBL] [Abstract][Full Text] [Related]
16. Graphene oxide modification enhances the activity of chitosan against Fusarium graminearum in vitro and in vivo. Zhang W; Cheng C; Wang R; Peng F; Du H; Zheng Z; Hou W; Yang Y; Wang X; Deng Y Int J Biol Macromol; 2022 Oct; 219():1112-1121. PubMed ID: 36049564 [TBL] [Abstract][Full Text] [Related]
18. Effect of 5-n-alkylresorcinol extracts from durum wheat whole grain on the growth of fusarium head blight (FHB) causal agents. Ciccoritti R; Pasquini M; Sgrulletta D; Nocente F J Agric Food Chem; 2015 Jan; 63(1):43-50. PubMed ID: 25496267 [TBL] [Abstract][Full Text] [Related]
19. Phases of infection and gene expression of Fusarium graminearum during crown rot disease of wheat. Stephens AE; Gardiner DM; White RG; Munn AL; Manners JM Mol Plant Microbe Interact; 2008 Dec; 21(12):1571-81. PubMed ID: 18986253 [TBL] [Abstract][Full Text] [Related]
20. Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Zhou W; Kolb FL; Riechers DE Genome; 2005 Oct; 48(5):770-80. PubMed ID: 16391683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]