These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 27664927)
21. Control of Wheat Fusarium Head Blight by Heat-Stable Antifungal Factor (HSAF) from Zhao Y; Cheng C; Jiang T; Xu H; Chen Y; Ma Z; Qian G; Liu F Plant Dis; 2019 Jun; 103(6):1286-1292. PubMed ID: 30995421 [TBL] [Abstract][Full Text] [Related]
22. tRNA-derived fragments from wheat are potentially involved in susceptibility to Fusarium head blight. Sun Z; Hu Y; Zhou Y; Jiang N; Hu S; Li L; Li T BMC Plant Biol; 2022 Jan; 22(1):3. PubMed ID: 34979923 [TBL] [Abstract][Full Text] [Related]
23. Bacillomycin D Produced by Bacillus amyloliquefaciens Is Involved in the Antagonistic Interaction with the Plant-Pathogenic Fungus Fusarium graminearum. Gu Q; Yang Y; Yuan Q; Shi G; Wu L; Lou Z; Huo R; Wu H; Borriss R; Gao X Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733288 [No Abstract] [Full Text] [Related]
24. Exogenous Abscisic Acid and Gibberellic Acid Elicit Opposing Effects on Fusarium graminearum Infection in Wheat. Buhrow LM; Cram D; Tulpan D; Foroud NA; Loewen MC Phytopathology; 2016 Sep; 106(9):986-96. PubMed ID: 27135677 [TBL] [Abstract][Full Text] [Related]
25. Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum. Lionetti V; Giancaspro A; Fabri E; Giove SL; Reem N; Zabotina OA; Blanco A; Gadaleta A; Bellincampi D BMC Plant Biol; 2015 Jan; 15():6. PubMed ID: 25597920 [TBL] [Abstract][Full Text] [Related]
26. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins. Cheng W; Li HP; Zhang JB; Du HJ; Wei QY; Huang T; Yang P; Kong XW; Liao YC Plant Biotechnol J; 2015 Jun; 13(5):664-74. PubMed ID: 25418882 [TBL] [Abstract][Full Text] [Related]
27. Regional and field-specific factors affect the composition of fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Del Ponte EM; Spolti P; Ward TJ; Gomes LB; Nicolli CP; Kuhnem PR; Silva CN; Tessmann DJ Phytopathology; 2015 Feb; 105(2):246-54. PubMed ID: 25121641 [TBL] [Abstract][Full Text] [Related]
28. Induction of wheat defense and stress-related genes in response to Fusarium graminearum. Kong L; Anderson JM; Ohm HW Genome; 2005 Feb; 48(1):29-40. PubMed ID: 15729394 [TBL] [Abstract][Full Text] [Related]
29. Wheat Blast and Fusarium Head Blight Display Contrasting Interaction Patterns on Ears of Wheat Genotypes Differing in Resistance. Ha X; Koopmann B; von Tiedemann A Phytopathology; 2016 Mar; 106(3):270-81. PubMed ID: 26574785 [TBL] [Abstract][Full Text] [Related]
30. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Huang R; Feng Z; Chi X; Sun X; Lu Y; Zhang B; Lu R; Luo W; Wang Y; Miao J; Ge Y Microbiol Res; 2018 Oct; 215():55-64. PubMed ID: 30172309 [TBL] [Abstract][Full Text] [Related]
31. Concurrent selection for microbial suppression of Fusarium graminearum, Fusarium head blight and deoxynivalenol in wheat. He J; Boland GJ; Zhou T J Appl Microbiol; 2009 Jun; 106(6):1805-17. PubMed ID: 19298518 [TBL] [Abstract][Full Text] [Related]
32. PvPGIP2 Accumulation in Specific Floral Tissues But Not in the Endosperm Limits Fusarium graminearum Infection in Wheat. Tundo S; Janni M; Moscetti I; Mandalà G; Savatin D; Blechl A; Favaron F; D'Ovidio R Mol Plant Microbe Interact; 2016 Oct; 29(10):815-821. PubMed ID: 27671121 [TBL] [Abstract][Full Text] [Related]
33. The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Kasprowicz MJ; Kozioł M; Gorczyca A Can J Microbiol; 2010 Mar; 56(3):247-53. PubMed ID: 20453911 [TBL] [Abstract][Full Text] [Related]
34. FgNoxR, a regulatory subunit of NADPH oxidases, is required for female fertility and pathogenicity in Fusarium graminearum. Zhang C; Lin Y; Wang J; Wang Y; Chen M; Norvienyeku J; Li G; Yu W; Wang Z FEMS Microbiol Lett; 2016 Jan; 363(1):fnv223. PubMed ID: 26607286 [TBL] [Abstract][Full Text] [Related]
35. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Dananjaya SHS; Erandani WKCU; Kim CH; Nikapitiya C; Lee J; De Zoysa M Int J Biol Macromol; 2017 Dec; 105(Pt 1):478-488. PubMed ID: 28709896 [TBL] [Abstract][Full Text] [Related]
36. Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. Dyer RB; Plattner RD; Kendra DF; Brown DW J Agric Food Chem; 2005 Nov; 53(23):9281-7. PubMed ID: 16277434 [TBL] [Abstract][Full Text] [Related]
37. Combination of Palazzini J; Reynoso A; Yerkovich N; Zachetti V; Ramírez M; Chulze S Toxins (Basel); 2022 Jul; 14(7):. PubMed ID: 35878237 [No Abstract] [Full Text] [Related]
38. Identification of putative phosphoproteins in wheat spikes induced by Fusarium graminearum. Ding L; Yang R; Yang G; Cao J; Li P; Zhou Y Planta; 2016 Mar; 243(3):719-31. PubMed ID: 26669597 [TBL] [Abstract][Full Text] [Related]
39. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Josefsen L; Droce A; Sondergaard TE; Sørensen JL; Bormann J; Schäfer W; Giese H; Olsson S Autophagy; 2012 Mar; 8(3):326-37. PubMed ID: 22240663 [TBL] [Abstract][Full Text] [Related]
40. Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes. Cowger C; Arellano C Phytopathology; 2013 May; 103(5):460-71. PubMed ID: 23252971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]