BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 27664965)

  • 1. Distinct Corticostriatal and Intracortical Pathways Mediate Bilateral Sensory Responses in the Striatum.
    Reig R; Silberberg G
    Cereb Cortex; 2016 Dec; 26(12):4405-4415. PubMed ID: 27664965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrissal motor cortex in the rat: connections with the barrel field.
    Izraeli R; Porter LL
    Exp Brain Res; 1995; 104(1):41-54. PubMed ID: 7621940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold.
    Li L; Ebner FF
    Exp Brain Res; 2006 Jul; 172(3):397-415. PubMed ID: 16429268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale maintenance of dual projections by callosal and frontal cortical projection neurons in adult mice.
    Mitchell BD; Macklis JD
    J Comp Neurol; 2005 Jan; 482(1):17-32. PubMed ID: 15612019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential topography of the bilateral cortical projections to the whisker and forepaw regions in rat motor cortex.
    Colechio EM; Alloway KD
    Brain Struct Funct; 2009 Sep; 213(4-5):423-39. PubMed ID: 19672624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circuit-Specific Plasticity of Callosal Inputs Underlies Cortical Takeover.
    Petrus E; Dembling S; Usdin T; Isaac JTR; Koretsky AP
    J Neurosci; 2020 Sep; 40(40):7714-7723. PubMed ID: 32913109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices.
    Casas-Torremocha D; Clascá F; Núñez Á
    Front Neural Circuits; 2017; 11():69. PubMed ID: 29021744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration and propagation of somatosensory responses in the corticostriatal pathway: an intracellular study in vivo.
    Pidoux M; Mahon S; Deniau JM; Charpier S
    J Physiol; 2011 Jan; 589(Pt 2):263-81. PubMed ID: 21059765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposing Influence of Sensory and Motor Cortical Input on Striatal Circuitry and Choice Behavior.
    Lee CR; Yonk AJ; Wiskerke J; Paradiso KG; Tepper JM; Margolis DJ
    Curr Biol; 2019 Apr; 29(8):1313-1323.e5. PubMed ID: 30982651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryonic neurons transplanted to regions of targeted photolytic cell death in adult mouse somatosensory cortex re-form specific callosal projections.
    Hernit-Grant CS; Macklis JD
    Exp Neurol; 1996 May; 139(1):131-42. PubMed ID: 8635560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum.
    Ramanathan S; Hanley JJ; Deniau JM; Bolam JP
    J Neurosci; 2002 Sep; 22(18):8158-69. PubMed ID: 12223570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multisensory integration in the mouse striatum.
    Reig R; Silberberg G
    Neuron; 2014 Sep; 83(5):1200-12. PubMed ID: 25155959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticofugal projections from medial primary somatosensory cortex avoid EphA7-expressing neurons in striatum and thalamus.
    Tai AX; Kromer LF
    Neuroscience; 2014 Aug; 274():409-18. PubMed ID: 24909897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous integration of bilateral whisker signals by neurons in primary somatosensory cortex of awake rats.
    Wiest MC; Bentley N; Nicolelis MA
    J Neurophysiol; 2005 May; 93(5):2966-73. PubMed ID: 15563555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Functional Organization of Cortical and Thalamic Inputs onto Five Types of Striatal Neurons Is Determined by Source and Target Cell Identities.
    Johansson Y; Silberberg G
    Cell Rep; 2020 Jan; 30(4):1178-1194.e3. PubMed ID: 31995757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PlexinD1 and Sema3E determine laminar positioning of heterotopically projecting callosal neurons.
    Velona T; Altounian M; Roque M; Hocine M; Bellon A; Briz CG; Salin P; Nieto M; Chauvet S; Mann F
    Mol Cell Neurosci; 2019 Oct; 100():103397. PubMed ID: 31454665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topographic precision in sensory and motor corticostriatal projections varies across cell type and cortical area.
    Hooks BM; Papale AE; Paletzki RF; Feroze MW; Eastwood BS; Couey JJ; Winnubst J; Chandrashekar J; Gerfen CR
    Nat Commun; 2018 Sep; 9(1):3549. PubMed ID: 30177709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner.
    Ketzef M; Spigolon G; Johansson Y; Bonito-Oliva A; Fisone G; Silberberg G
    Neuron; 2017 May; 94(4):855-865.e5. PubMed ID: 28521136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Callosal projections in rat somatosensory cortex are altered by early removal of afferent input.
    Koralek KA; Killackey HP
    Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1396-400. PubMed ID: 2304906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual projections of tuberomammillary neurons to whisker-related, sensory and motor regions of the rat.
    Hong EY; Beak SK; Lee HS
    Brain Res; 2010 Oct; 1354():64-73. PubMed ID: 20682294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.