BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27665001)

  • 1. Redox Dysregulation in Schizophrenia Revealed by in vivo NAD+/NADH Measurement.
    Kim SY; Cohen BM; Chen X; Lukas SE; Shinn AK; Yuksel AC; Li T; Du F; Öngür D
    Schizophr Bull; 2017 Jan; 43(1):197-204. PubMed ID: 27665001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain bioenergetics and redox state measured by
    Chouinard VA; Kim SY; Valeri L; Yuksel C; Ryan KP; Chouinard G; Cohen BM; Du F; Öngür D
    Schizophr Res; 2017 Sep; 187():11-16. PubMed ID: 28258794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular redox state revealed by in vivo (31) P MRS measurement of NAD(+) and NADH contents in brains.
    Lu M; Zhu XH; Zhang Y; Chen W
    Magn Reson Med; 2014 Jun; 71(6):1959-72. PubMed ID: 23843330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo (31) P MRS assessment of intracellular NAD metabolites and NAD(+) /NADH redox state in human brain at 4 T.
    Lu M; Zhu XH; Chen W
    NMR Biomed; 2016 Jul; 29(7):1010-7. PubMed ID: 27257783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia.
    Skupienski R; Steullet P; Do KQ; Xin L
    Transl Psychiatry; 2023 Aug; 13(1):275. PubMed ID: 37543592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic Resonance Spectroscopy Studies of Brain Energy Metabolism in Schizophrenia: Progression from Prodrome to Chronic Psychosis.
    Stein A; Zhu C; Du F; Öngür D
    Curr Psychiatry Rep; 2023 Nov; 25(11):659-669. PubMed ID: 37812338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of Non-invasive Measurement of Tumour NAD(H) by In Vivo Phosphorus-31 Magnetic Resonance Spectroscopy.
    Nath K; Arias-Mendoza F; Xu HN; Gupta PK; Li LZ
    Adv Exp Med Biol; 2022; 1395():237-242. PubMed ID: 36527643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo
    Skupienski R; Do KQ; Xin L
    Sci Rep; 2020 Sep; 10(1):15623. PubMed ID: 32973277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences.
    Zhu XH; Lu M; Lee BY; Ugurbil K; Chen W
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2876-81. PubMed ID: 25730862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox dysregulation in the pathophysiology of schizophrenia and bipolar disorder: insights from animal models.
    Kulak A; Steullet P; Cabungcal JH; Werge T; Ingason A; Cuenod M; Do KQ
    Antioxid Redox Signal; 2013 Apr; 18(12):1428-43. PubMed ID: 22938092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia.
    Kunz M; Gama CS; Andreazza AC; Salvador M; Ceresér KM; Gomes FA; Belmonte-de-Abreu PS; Berk M; Kapczinski F
    Prog Neuropsychopharmacol Biol Psychiatry; 2008 Oct; 32(7):1677-81. PubMed ID: 18657586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox and Immune Signaling in Schizophrenia: New Therapeutic Potential.
    Dwir D; Khadimallah I; Xin L; Rahman M; Du F; Öngür D; Do KQ
    Int J Neuropsychopharmacol; 2023 May; 26(5):309-321. PubMed ID: 36975001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurobiological Commonalities and Distinctions Among Three Major Psychiatric Diagnostic Categories: A Structural MRI Study.
    Chang M; Womer FY; Edmiston EK; Bai C; Zhou Q; Jiang X; Wei S; Wei Y; Ye Y; Huang H; He Y; Xu K; Tang Y; Wang F
    Schizophr Bull; 2018 Jan; 44(1):65-74. PubMed ID: 29036668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morning cortisol levels in schizophrenia and bipolar disorder: a meta-analysis.
    Girshkin L; Matheson SL; Shepherd AM; Green MJ
    Psychoneuroendocrinology; 2014 Nov; 49():187-206. PubMed ID: 25108162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The NAD ratio redox paradox: why does too much reductive power cause oxidative stress?
    Teodoro JS; Rolo AP; Palmeira CM
    Toxicol Mech Methods; 2013 Jun; 23(5):297-302. PubMed ID: 23256455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox dysregulation, immuno-inflammatory alterations and genetic variants of BDNF and MMP-9 in schizophrenia: Pathophysiological and phenotypic implications.
    Ali FT; Abd El-Azeem EM; Hamed MA; Ali MAM; Abd Al-Kader NM; Hassan EA
    Schizophr Res; 2017 Oct; 188():98-109. PubMed ID: 28100419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects.
    Gubert C; Stertz L; Pfaffenseller B; Panizzutti BS; Rezin GT; Massuda R; Streck EL; Gama CS; Kapczinski F; Kunz M
    J Psychiatr Res; 2013 Oct; 47(10):1396-402. PubMed ID: 23870796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant defense in schizophrenia and bipolar disorder: A meta-analysis of MRS studies of anterior cingulate glutathione.
    Das TK; Javadzadeh A; Dey A; Sabesan P; Théberge J; Radua J; Palaniyappan L
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Apr; 91():94-102. PubMed ID: 30125624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diurnal cortisol variation and cortisol response to an MRI stressor in schizophrenia and bipolar disorder.
    Girshkin L; O'Reilly N; Quidé Y; Teroganova N; Rowland JE; Schofield PR; Green MJ
    Psychoneuroendocrinology; 2016 May; 67():61-9. PubMed ID: 26874562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced antioxidant defense systems in schizophrenia and bipolar I disorder.
    Raffa M; Barhoumi S; Atig F; Fendri C; Kerkeni A; Mechri A
    Prog Neuropsychopharmacol Biol Psychiatry; 2012 Dec; 39(2):371-5. PubMed ID: 22841966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.