BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 27665058)

  • 1. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
    Akyol K; Şen B; Bayır Ş
    Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach.
    Welfer D; Scharcanski J; Kitamura CM; Dal Pizzol MM; Ludwig LW; Marinho DR
    Comput Biol Med; 2010 Feb; 40(2):124-37. PubMed ID: 20045104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hard exudates segmentation based on learned initial seeds and iterative graph cut.
    Kusakunniran W; Wu Q; Ritthipravat P; Zhang J
    Comput Methods Programs Biomed; 2018 May; 158():173-183. PubMed ID: 29544783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation.
    Long S; Huang X; Chen Z; Pardhan S; Zheng D
    Biomed Res Int; 2019; 2019():3926930. PubMed ID: 30809539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for retinal exudate segmentation using signal separation algorithm.
    Imani E; Pourreza HR
    Comput Methods Programs Biomed; 2016 Sep; 133():195-205. PubMed ID: 27393810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exudate detection in color retinal images for mass screening of diabetic retinopathy.
    Zhang X; Thibault G; Decencière E; Marcotegui B; Laÿ B; Danno R; Cazuguel G; Quellec G; Lamard M; Massin P; Chabouis A; Victor Z; Erginay A
    Med Image Anal; 2014 Oct; 18(7):1026-43. PubMed ID: 24972380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal image analysis for disease screening through local tetra patterns.
    Porwal P; Pachade S; Kokare M; Giancardo L; Mériaudeau F
    Comput Biol Med; 2018 Nov; 102():200-210. PubMed ID: 30308336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundus optic disc localization and segmentation method based on phase congruency.
    Geng L; Shao YT; Xiao ZT; Zhang F; Wu J; Li M; Shan CY
    Biomed Mater Eng; 2014; 24(6):3223-9. PubMed ID: 25227031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optic Disk Detection in Fundus Image Based on Structured Learning.
    Fan Z; Rong Y; Cai X; Lu J; Li W; Lin H; Chen X
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):224-234. PubMed ID: 28692999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Kuchinka SN; Parhi KK
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1562-1574. PubMed ID: 26316237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs.
    Niemeijer M; Xu X; Dumitrescu AV; Gupta P; van Ginneken B; Folk JC; Abramoff MD
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1941-50. PubMed ID: 21690008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation.
    Mookiah MR; Acharya UR; Chua CK; Min LC; Ng EY; Mushrif MM; Laude A
    Proc Inst Mech Eng H; 2013 Jan; 227(1):37-49. PubMed ID: 23516954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images.
    Christodoulidis A; Hurtut T; Tahar HB; Cheriet F
    Comput Med Imaging Graph; 2016 Sep; 52():28-43. PubMed ID: 27341026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images.
    Welfer D; Scharcanski J; Marinho DR
    Comput Med Imaging Graph; 2010 Apr; 34(3):228-35. PubMed ID: 19954928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms.
    Khojasteh P; Aliahmad B; Kumar DK
    BMC Ophthalmol; 2018 Nov; 18(1):288. PubMed ID: 30400869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Automatic detection of vessels in color fundus images].
    Jiménez S; Alemany P; Fondón I; Foncubierta A; Acha B; Serrano C
    Arch Soc Esp Oftalmol; 2010 Mar; 85(3):103-9. PubMed ID: 20619121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic optic disk detection in retinal images using hybrid vessel phase portrait analysis.
    Muangnak N; Aimmanee P; Makhanov S
    Med Biol Eng Comput; 2018 Apr; 56(4):583-598. PubMed ID: 28836125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decision support system for the detection and grading of hard exudates from color fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    J Biomed Opt; 2011 Nov; 16(11):116001. PubMed ID: 22112106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ensemble classification of exudates in color fundus images using an evolutionary algorithm based optimal features selection.
    Ullah H; Saba T; Islam N; Abbas N; Rehman A; Mehmood Z; Anjum A
    Microsc Res Tech; 2019 Apr; 82(4):361-372. PubMed ID: 30677193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.