BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27665084)

  • 1. Characterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modeling.
    Feng Y; Lee CH; Sun L; Ji S; Zhao X
    J Mech Behav Biomed Mater; 2017 Jan; 65():490-501. PubMed ID: 27665084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of invariant I
    Feng Y; Qiu S; Xia X; Ji S; Lee CH
    J Biomech; 2017 May; 57():146-151. PubMed ID: 28433390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the damage-induced softening behavior of brain white matter using a coupled hyperelasticty-damage model.
    He G; Xia B; Feng Y; Chen Y; Fan L; Zhang D
    J Mech Behav Biomed Mater; 2023 May; 141():105753. PubMed ID: 36898357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter.
    Feng Y; Okamoto RJ; Namani R; Genin GM; Bayly PV
    J Mech Behav Biomed Mater; 2013 Jul; 23():117-32. PubMed ID: 23680651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic characterization of transversely isotropic soft materials by dynamic shear and asymmetric indentation.
    Namani R; Feng Y; Okamoto RJ; Jesuraj N; Sakiyama-Elbert SE; Genin GM; Bayly PV
    J Biomech Eng; 2012 Jun; 134(6):061004. PubMed ID: 22757501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography.
    Schmidt JL; Tweten DJ; Badachhape AA; Reiter AJ; Okamoto RJ; Garbow JR; Bayly PV
    J Mech Behav Biomed Mater; 2018 Mar; 79():30-37. PubMed ID: 29253729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.
    Fu YB; Chui CK
    J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and numerical analyses of indentation in finite-sized isotropic and anisotropic rubber-like materials.
    Karduna AR; Halperin HR; Yin FC
    Ann Biomed Eng; 1997; 25(6):1009-16. PubMed ID: 9395046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Anisotropy vs. Mechanical Anisotropy: The Contribution of Axonal Fibers to the Material Properties of Brain White Matter.
    Eskandari F; Shafieian M; Aghdam MM; Laksari K
    Ann Biomed Eng; 2021 Mar; 49(3):991-999. PubMed ID: 33025318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components.
    Yousefsani SA; Shamloo A; Farahmand F
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1143-1153. PubMed ID: 31853724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explicit Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model.
    Wu T; Alshareef A; Giudice JS; Panzer MB
    Ann Biomed Eng; 2019 Sep; 47(9):1908-1922. PubMed ID: 30877404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional micromechanical model of brain white matter with histology-informed probabilistic distribution of axonal fibers.
    Yousefsani SA; Farahmand F; Shamloo A
    J Mech Behav Biomed Mater; 2018 Dec; 88():288-295. PubMed ID: 30196184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 2000 Feb; 122(1):1-8. PubMed ID: 10790823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macro-indentation testing of soft biological materials and assessment of hyper-elastic material models from inverse finite element analysis.
    Ayyalasomayajula V; Ervik Ø; Sorger H; Skallerud B
    J Mech Behav Biomed Mater; 2024 Mar; 151():106389. PubMed ID: 38211503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation.
    Ning X; Zhu Q; Lanir Y; Margulies SS
    J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive mechanical characterization of non-human primate spinal cord white matter.
    Jannesar S; Allen M; Mills S; Gibbons A; Bresnahan JC; Salegio EA; Sparrey CJ
    Acta Biomater; 2018 Jul; 74():260-269. PubMed ID: 29729417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined experimental, modeling, and computational approach to interpret the viscoelastic response of the white matter brain tissue during indentation.
    Samadi-Dooki A; Voyiadjis GZ; Stout RW
    J Mech Behav Biomed Mater; 2018 Jan; 77():24-33. PubMed ID: 28888930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Region-Dependent Mechanical Properties of Human Brain Tissue Under Large Deformations Using Inverse Finite Element Modeling.
    Basilio AV; Zeng D; Pichay LA; Maas SA; Sundaresh SN; Finan JD; Elkin BS; McKhann GM; Ateshian GA; Morrison B
    Ann Biomed Eng; 2024 Mar; 52(3):600-610. PubMed ID: 37993751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.