These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 27665088)
41. Changes in muscle activity in typically developing children walking with unilaterally induced equinus. Houx L; Lempereur M; Rémy-Néris O; Gross R; Brochard S Clin Biomech (Bristol); 2014 Dec; 29(10):1116-24. PubMed ID: 25451859 [TBL] [Abstract][Full Text] [Related]
42. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers. van Kammen K; Boonstra AM; van der Woude LHV; Reinders-Messelink HA; den Otter R J Neuroeng Rehabil; 2017 Apr; 14(1):32. PubMed ID: 28427422 [TBL] [Abstract][Full Text] [Related]
43. Exploring the Influence of Structured Familiarization to an Adjustable, Passive Load-Bearing Exoskeleton on Oxygen Consumption and Lower Limb Muscle Activation During Walking. Diamond-Ouellette G; Le Quang M; Karakolis T; Bouyer LJ; Best KL IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2441-2449. PubMed ID: 38935466 [TBL] [Abstract][Full Text] [Related]
44. [Study on the influence of wearable lower limb exoskeleton on gait characteristics]. Zhang J; Cai Y; Liu Q Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):785-794. PubMed ID: 31631627 [TBL] [Abstract][Full Text] [Related]
45. Impact of a short walking exercise on gait kinematics in children with cerebral palsy who walk in a crouch gait. Parent A; Raison M; Pouliot-Laforte A; Marois P; Maltais DB; Ballaz L Clin Biomech (Bristol); 2016 May; 34():18-21. PubMed ID: 27038653 [TBL] [Abstract][Full Text] [Related]
46. The Effects of Exoskeleton Assisted Knee Extension on Lower-Extremity Gait Kinematics, Kinetics, and Muscle Activity in Children with Cerebral Palsy. Lerner ZF; Damiano DL; Bulea TC Sci Rep; 2017 Oct; 7(1):13512. PubMed ID: 29044202 [TBL] [Abstract][Full Text] [Related]
47. Achilles tendon length and medial gastrocnemius architecture in children with cerebral palsy and equinus gait. Wren TA; Cheatwood AP; Rethlefsen SA; Hara R; Perez FJ; Kay RM J Pediatr Orthop; 2010; 30(5):479-84. PubMed ID: 20574267 [TBL] [Abstract][Full Text] [Related]
48. Dynamic Musculoskeletal Simulation of a Passive Exoskeleton for Simulating Contracture. Bajpai R; Joshi D Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():877-880. PubMed ID: 36085921 [TBL] [Abstract][Full Text] [Related]
49. The influence of gait speed on co-activation in unilateral spastic cerebral palsy children. Gross R; Leboeuf F; Hardouin JB; Lempereur M; Perrouin-Verbe B; Remy-Neris O; Brochard S Clin Biomech (Bristol); 2013 Mar; 28(3):312-7. PubMed ID: 23399384 [TBL] [Abstract][Full Text] [Related]
50. Repeatability of electromyography recordings and muscle synergies during gait among children with cerebral palsy. Steele KM; Munger ME; Peters KM; Shuman BR; Schwartz MH Gait Posture; 2019 Jan; 67():290-295. PubMed ID: 30396059 [TBL] [Abstract][Full Text] [Related]
51. Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking. Bianco NA; Collins SH; Liu K; Delp SL PLoS Comput Biol; 2023 Aug; 19(8):e1010712. PubMed ID: 37549183 [TBL] [Abstract][Full Text] [Related]
52. A new walking aid with axillary support for children with cerebral palsy: electromyographic evaluation. Botega R; Medola FO; Santos CB; Silva AT; Iunes DH; Purquerio Bde M Disabil Rehabil Assist Technol; 2013 Nov; 8(6):507-10. PubMed ID: 23480125 [TBL] [Abstract][Full Text] [Related]
53. Stiff-knee gait in cerebral palsy: how do patients adapt to uneven ground? Böhm H; Hösl M; Schwameder H; Döderlein L Gait Posture; 2014 Apr; 39(4):1028-33. PubMed ID: 24485919 [TBL] [Abstract][Full Text] [Related]
54. An electromyographic analysis of obligatory (hemiplegic cerebral palsy) and voluntary (normal) unilateral toe-walking. Romkes J; Brunner R Gait Posture; 2007 Oct; 26(4):577-86. PubMed ID: 17275305 [TBL] [Abstract][Full Text] [Related]
55. Validity of gait parameters for hip flexor contracture in patients with cerebral palsy. Choi SJ; Chung CY; Lee KM; Kwon DG; Lee SH; Park MS J Neuroeng Rehabil; 2011 Jan; 8():4. PubMed ID: 21255458 [TBL] [Abstract][Full Text] [Related]
56. Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter. Sado F; Yap HJ; Ghazilla RAR; Ahmad N PLoS One; 2018; 13(7):e0200193. PubMed ID: 30001415 [TBL] [Abstract][Full Text] [Related]
57. Does texting while walking really affect gait in young adults? Agostini V; Lo Fermo F; Massazza G; Knaflitz M J Neuroeng Rehabil; 2015 Sep; 12():86. PubMed ID: 26395248 [TBL] [Abstract][Full Text] [Related]
58. Biomechanical Effects of Adding an Ankle Soft Actuation in a Unilateral Exoskeleton. Otálora S; Ballen-Moreno F; Arciniegas-Mayag L; Cifuentes CA; Múnera M Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291010 [TBL] [Abstract][Full Text] [Related]
59. A method for quantifying dynamic muscle dysfunction in children and young adults with cerebral palsy. Wakeling J; Delaney R; Dudkiewicz I Gait Posture; 2007 Apr; 25(4):580-9. PubMed ID: 16876416 [TBL] [Abstract][Full Text] [Related]
60. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment. Wang Y; Liu Z; Feng Z Clin Biomech (Bristol); 2022 May; 95():105660. PubMed ID: 35561659 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]